

Influence of Boron Deficiency on Structural Stability of Thin $V_{1-x}W_xB_{2-\Delta}$ Films

Katarína Viskupová^{1, a)}, Tomáš Fiantok², Branislav Grančič¹, Peter Švec Jr.³, Tomáš Roch¹, Martin Truchlý², Viktor Šroba¹, Leonid Satrapinskyy¹, Peter Kúš,¹ and Marián Mikula^{1, 3}

¹Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia

²Detached Workplace of Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Sadová 1148, Turany 038 53, Slovakia

³Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia

^{a)} Corresponding author: katarina.viskupova@fmph.uniba.sk

Abstract. Diborides of transition metals (TMB₂) are materials characterized by high hardness, wear resistance, electrical conductivity, and resistance to high temperatures, which makes them promising candidates for various thin film applications. Diboride films are usually prepared by physical vapor deposition (PVD) techniques, such as magnetron sputtering, which can lead to deposition of films with a wide range of chemical composition [1, 2]. Often observed excess or deficiency of boron leads to formation of various structural defects, which can have a significant effect on the mechanical properties [3-5]. In our work, we investigate the influence of boron understoichiometry (B/TM < 2) on structural stability of the ternary $V_{1-x}W_xB_{2-\Delta}$ system. Using density functional theory, we show that presence of boron vacancies destabilizes the system towards decomposition into hexagonal P6/mmm-VB₂ and orthorhombic Cmcm-WB_{1±δ} phase. Experimentally, we observed this structural separation in $V_{0.56}W_{0.44}B_{1.7}$ film prepared by magnetron sputtering and ex-situ annealed in vacuum at 1200°C. We present results of detailed structural analysis by high-resolution transition electron microscopy that revealed presence of anti-phase boundary defects which enable coherent transformation between the hexagonal and the orthorhombic phase.

REFERENCES

- [1] Neidhardt, J. *et al.*, Experiment and simulation of the compositional evolution of Ti–B thin films deposited by sputtering of a compound target, *J. Appl. Phys.* **104**, 063304 (2008)
- [2] Viskupová *et al.*, Effect of reflected Ar neutrals on tantalum diboride coatings prepared by direct current magnetron sputtering, *Surface and Coatings Technology* **421**, 127463 (2021)
- [3] Mayrhofer, P. H. *et al.*, Self-organized nanocolumnar structure in superhard TiB₂ thin films. *Appl Phys Lett* **86**, 1–3 (2005).
- [4] Palisaitis, J. *et al.*, On the nature of planar defects in transition metal diboride line compounds, *Materialia* **24**, 101478 (2022)
- [5] Viskupová *et al.*, Thermally induced planar defect formation in sputtered $V_{1-x}MoxB_{2-\Delta}$ films, *Scripta Materialia* **229**, 115365 (2023)

ACKNOWLEDGMENTS

This work was supported by the Slovak Research and Development Agency (Grant No. APVV-21-0042), Scientific Grant Agency (Grant No. VEGA 1/0296/22), European Space Agency (ESA Contract No. ESA AO/ 1-10586/21/NL/SC), and Operational Program Integrated Infrastructure (Project No. ITMS 313011AUH4).