

Hydrostatic Pressure Control of the Spin-Orbit Proximity Effect and Spin Relaxation in a Phosphorene-WSe₂ Heterostructure

Marko Milivojević^{1, 2, a)}, Marcin Kurpas³, Maedeh Rassekh⁴, Ivan Štich¹, and Martin Gmitra^{4,5}

¹ Institute of Informatics, Slovak Academy of Sciences, 84507 Bratislava, Slovakia

² Faculty of Physics, University of Belgrade, 11001 Belgrade, Serbia

³ Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland

⁴ Institute of Physics, Pavol Jozef Šafárik University in Košice, 04001 Košice, Slovakia

⁵ Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Košice, Slovakia

a) Corresponding author: marko.milivojevic@savba.sk

Abstract. Mixed-lattice heterostructures offer a versatile platform for engineering novel spin textures. Focusing on the phosphorene-WSe₂ heterostructure, we show how the spin-orbit coupling can be transferred from WS₂, a strong spin-orbit coupling material, to phosphorene and boosted by applying vertical pressure. By changing the optimal interlayer distance between bilayer constituents, which corresponds to the applied pressure in the realistic experimental setup, we show that it is possible to tune the spin-orbit field of phosphorene holes controllably. Fitting of the ab initio calculation data to the effective spin-orbit Hamiltonian model applicable for phosphorene holes around the Γ point reveals that the spin-orbit field can be increased more than two times for the applied pressure up to 17 kbar, consistent with the experimental results of the spin-orbit proximity effect in a graphene/WSe₂ heterostructure. Finally, by calculating the spin relaxation times of phosphorene holes, which represent an experimentally measurable quantity directly affected by the spin-orbit coupling strength, we reveal that the gradual tunability of spin-orbit coupling by the hydrostatic pressure transfers to the tunable decrease of spin relaxation times, suggesting a possibility for a simple determination of hydrostatic pressure effects on the strength of the spin-orbit field in phosphorene-based heterostructures.

ACKNOWLEDGMENTS

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Programme SASPRO2 COFUND Marie Skłodowska-Curie grant agreement No. 945478.