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Photoelectron diffraction (PED) is a powerful and driving experimental technique for resolving the structure
of surfaces with sub-ångstrom resolution. Being able to opt the emitters based on their specific binding en-
ergy makes PED widely used for following investigation purposes: crystal structures, bonding geometries of
atoms and the local environment of impurity or dopant atoms inside surfaces [1]. Similarly, to angle-resolved
photoemission spectroscopy (ARPES), the angular distribution of photoelectrons emitted from a crystal sur-
face is studied. Nevertheless, the physics behind and investigation objective are distinct for two mentioned
approaches.  The  angular  distribution  of  emitted  electrons  represents  the  momentum of  initial  states  in
ARPES meanwhile it reveals the interference of photoelectron waves from final states in PED. Depending on
the utilized photon energies, this tool can be termed either ultraviolet-PED (UPD) or X-ray-PED (XPD). In
high energy regime, XPD effects are found in ARPES measurements beside other obstacles (low cross-sec-
tions, large photon momentum transfer, non-negligible phonon scattering) [2]. Overall, XPD is not only an
advantageous approach but also an unexpected effect [3]. Here, to disentangle these diffraction influences,
we present a PED implement for SPRKKR package [4] which makes use of multiple scattering theory and
one-step model in photoemission process [5].

In contrast to the other real space implementations of the multiple scattering XPD formalism, here we pro-
pose to use k-space implementation based on the layer KKR method. Main advantage of this method is that
we can without convergence problems (wrt. the angular momentum and cluster size) address very broad ki-
netic energy range (20-8000eV). Furthermore, the so-called alloy analogy model [6,7] can be used to simu-
late XPD at finite temperatures as well as XPD effects observed in the soft and hard X-ray ARPES [8]. For
the sake of applications, we have calculated the circular dichroism in angular distributions (CDAD) associ-
ated with core-level photoemission of 3d from W(110) and 3p from Ge(100) [9]. Photoelectrons are excited
by hard X-rays (6000 eV) with right and left circularly polarized radiation (RCP and LCP, respectively).
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