

Dynamics of Domain Wall in Rapidly - Changing Magnetic Field

Simeon Samuhel ^{a)}, Jana Horniaková ^{b)}, Peter Duranka ^{c)},
Jozef Onufer ^{d)} and Ján Ziman ^{e)}

*Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,
Park Komenského 2, 042 00 Košice*

^{a)} Corresponding author: simeon.samuhel@tuke.sk

^{b)} jana.horniakova@tuke.sk, ^{c)} peter.duranka@tuke.sk, ^{d)} jozef.onufer@tuke.sk, ^{e)} jan.ziman@tuke.sk

Abstract. A new experimental method for studying single domain wall (DW) dynamics in bistable microwires is presented. It provides new possibilities to study the dynamics of a domain wall moving in a region of rapidly-changing magnetic field. When the moving DW is forced to change its parameters in a very short time, the corresponding changes in velocity are different for rapid increase and decrease in field strength. Experimental $v(x)$ dependences are compared with theoretical ones which correspond to the case when a DW moves with no inertial effects, or when the DW has enough time to adapt to the field in which it moves. The results obtained support the idea that a DW in bistable microwires is not a solid object, but changes its parameters (e.g. wall velocity) depending on the magnetic field applied.