

Spin Polarisation in HfTe₂

Maria Christine Richter^{1,2}, Jakub Schusser⁶, Mauro Fanciulli^{1,2}, Zakariae El Youbi^{1,2,4}, Olivier Heckmann^{1,2}, Cephise Cacho⁴, Ivana Vobornik⁵, Debasish Mondal⁵, Jan Minár³ and Karol Hricovini^{1,2}

¹*Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France*

²*Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France*

³*New Technologies-Research Center, University of West Bohemia, 30614 Pilsen, Czech Republic*

⁴*Diamond Light Source, Harwell Campus, OX110DE Didcot, United Kingdom*

⁵*Elettra-Sincrotrone Trieste, 34149 Basovizza, Italy*

⁶*Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany*

Corresponding author: Christine.Richter@cyu.fr

Abstract. HfTe₂ formed in the stable 1T phase is a member of the 2D di-telluride family of layered materials which has been studied little. We will present recent results of high-resolution ARPES measurements and DFT calculations. Although this material doesn't have any spin-polarisation when integrated over one layer for the reason of inversion and time-reversal symmetry, spin-polarised states exist due to hidden spin-polarisation and due to the surface. Spin-resolved measurements of the hole and electron pockets compared to SPR-KKR one-step model calculations will be discussed.