

Spin-Orbit and Magnetic Proximity Effects in Layered Heterostructures

Martin Gmitra

Institute of Physics, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 04001 Košice, Slovakia

Corresponding author: martin.gmitra@upjs.sk

Abstract. Layered van der Waals heterostructures represents set of systems embedding emergent properties due to proximity effects. Specifically, graphene in vicinity to semiconducting transition metal dichalcogenides can borrow unique spin-momentum locking near the transition metal dichalcogenide valleys and modify its intrinsic spin-orbit coupling [1]. Considering in addition to semiconducting layer a magnetic layer, the time-reversal symmetry violates the valley-Zeeman spin-orbit term. Applying transverse electric field permits to modify carrier level occupation and introduce a valve effect [2]. In this talk we discuss density functional theory calculations and effective tight-binding model of the van der Waals heterostructure leading to so-called ex-so-tic device where bilayer graphene is proximitized by strong spin-orbit coupling from one side and magnetic exchange interaction from the other side [3].

This work was supported by the project CEDAMNF, reg. no. CZ.02.1.01/0.0/0.0/15_003/ and VEGA Grant No. 1/0105/20.

- [1] M. Gmitra, J. Fabian, Phys. Rev. B **92**, 155403 (2015).
- [2] M. Gmitra, J. Fabian, Phys. Rev. Let. **119**, 146401 (2017).
- [3] K. Zollner, M. Gmitra, J. Fabian, Phys. Rev. Lett. **125**, 196402 (2020).