

CFD Modeling of Transient Fluid-flow During LOCA Event in a VVER440/213 Reactor

Gabriel Gálik^{1, a)}, Vladimír Kutiš¹, Juraj Paulech¹, and Justin Murín¹

¹ *Institute of Automotive Mechatronics Faculty of Electrical Engineering and Information Technology Slovak University of Technology in Bratislava Ilkovičova 3, 812 16 Bratislava, Slovakia*

^{a)}Corresponding author: gabriel.galik@stuba.sk

Abstract. This article focuses on the modeling of the mixing processes of this cooling stripe and their effects on the RPV wall in a VVER440/213 Russian type PWR. The mixing processes are modeled in a transient thermo-hydraulic analysis which models the mixing of the coolant flows in the reactor pressure vessel and results in the overtime temperature and pressure fields within the RPV [1]. The analysis results show that the cooling stripe is not stationary. The turbulent mixing causes an unstable oscillatory motion of the cold stripe which has a notable effect on the RPV wall temperature distribution.