

Characterization of MIS Photoanode with a Thin SiO₂ Layer for Photoelectrochemical Water Splitting

Filip Chymo¹, Karol Fröhlich^{2,3}, Ivan Kundrata^{2,3}, Kristína Hušeková^{2,3},
Ladislav Harmatha¹, Juraj Racko¹, Juraj Breza¹, and Miroslav Mikolášek^{1,a)}

¹*Institute of Electronics and Photonics Faculty of Electrical Engineering and Information Technology,
Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovak Republic*

²*CEMEA SAS, Dúbravská cesta 5807/9, 841 04, Bratislava, Slovakia*

³*Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia*

^{a)}Corresponding author: miroslav.mikolasek@stuba.sk

Abstract. The results of capacitive and current voltage measurements on metal-insulator-semiconductor (MIS) photoanode structures with n-type silicon substrate are presented in this paper. The best photo-voltage and photo-current results were obtained on MIS structures with SiO₂ grown by Atomic Layer Deposition (ALD). High ideality factor observed in the voltage range 0.1-0.3 V indicates the tunnelling as a dominant transport mechanism through the ALD grown SiO₂ layer. Low Flat band voltages confirmed good passivation properties of the prepared ALD grown SiO₂. High saturation current and low overpotential of MIS photoelectrochemical structure with ALD SiO₂ and RuO₂ catalytic layer predict good applicability of ALD prepared passivation layer for light assisted water splitting.