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1. Abstract 

This paper is a theoretical prelude to future work involving positron diffusion in solids 

for the purpose of positron annihilation lifetime spectroscopy (PALS). PALS is a powerful 

tool used to study defects present in materials. However, the behavior of positrons in solids is 

a process hard to describe. Various models have been established to undertake this task. Our 

preliminary model is based on the Diffusion Trapping Model (DTM) described by partial 

differential Fokker-Planck equation and is solved via time discretization. Fokker-Planck 

equation describes the time evolution of the probability density function of velocity of a 

particle under the influence of various forces.  

  

2. Introduction 

The technique of positron annihilation is currently widely used method for detecting 

defects in solids. The technique operates on the principle that a positron annihilates through 

interaction with electrons. It is well known that a positron prior the annihilation with an 

electron in condensed matter spends a finite time 100–300 ps, randomly wandering within 

the material with thermal energies. The behavior of positrons in molecules or condensed 

matter is nontrivial due to the strong correlation between electrons and positrons.  Even the 

simplest model that of a single positron imbedded in a homogeneous gas of electrons has 

proven to be a significant challenge for theory. Positrons attract electrons resulting in 

increased contact density and hence increased annihilation rate. Furthermore, the momentum 

density of annihilating electron-positron pairs is increased near the Fermi surface. High 

sensitivity and good response to the structural defects has destined this technique for use in 

material engineering.  Although it is a promising technology, it remains problematic to 

process and interpret measured data. For this reason, experimental methods are usually 

combined with other simulation experiments. With the advent of computers it is possible to 

realize many refined numerical methods. We can mention the following: Tamm-Dancoff 

approximation [1], Fermi [2] and perturbed hypernetted chain approximations [3], density 

functional theory methods [4] and quantum Monte Carlo [5, 6]. Today it is generally 

accepted as a fact, that a calculation based on the two component density functional theory 

(TC DFT) is the best what can be offered.  However some areas remain in which numerical 

experiments are unusable, for instance positron annihilation in strongly inhomogeneous 

materials. In this case it is required to replace purely quantum mechanical approach for 

something simpler. Simplification based on an approximation of diffusion model has been 

found as a good idea. This paper is a theoretical prelude to future work involving positron 

diffusion in solids for the purpose of positron annihilation lifetime spectroscopy. The model is 
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based on the Diffusion Trapping Model (DTM) described by partial differential equation and 

is solved via time and space discretization. An important result of the study is that he 

diffusion model can describe the time evolution of the positron density under the influence of 

grain boundary in a solid. 

 

3. Diffusion Trapping Model (DTM) 

The theoretical description of the positron diffusion comprises two approaches. The simplest 

approach assumes that during thermalization the positrons are located in two distinct regions 

of a sample, grain and its boundary, in which they subsequently annihilate [7, 8].  Therefore, 

only the volume ratio of the two regions is important and the positron diffusion process can 

be neglected. In the second approach the positron diffusion is taken into account, however at 

a certain level of calculations approximations are introduced to adjust the resulting solution 

to fit the well known results obtained using the Standard Trapping Model where diffusion is 

neglected [9].  Nevertheless, several authors have obtained solutions of the positron diffusion 

equation for particular cases [10, 11].  Also Monte-Carlo simulations of positron diffusion in 

spherical and ellipsoidal grains were carried out by Hübner et al. [12]. The main assumption 

of DTM is that the grain boundary is a perfect sink for positrons in which they are localized 

and annihilate with the rate λb= 
1

𝜏𝑏
< 𝜆𝑓  ( Smoluchowski boundary condition) .  In the interior 

of the grains, positrons can randomly move and annihilate with the rate λf = 
1

𝜏𝑓
 , where τf is the 

positron lifetime in a free state. The movement of positron looks pretty chaotic. Chaotic 

movements can be simulated using diffusion which could be mathematically described by the 

following Fokker-Planck equation, 

where θ and D+ are coefficients of diffusion. Note, D+ depends on space, but in 

following discussion it will not be considered. The Fokker-Planck equation is a second 

order differential equation which describes the time evolution of the concentration (well 

probability distribution) in time and space of the positron. In general the Fokker-Planck 

equation can be derived from the Chapman-Kolmogorov equation, but also corresponds to 

the time dependence given by a Langevin equation. To simulate the interaction between 

positron and electrons which gather at grain boundaries a single equation is not enough. 

One more equation needs to be added for electrons and a function which describes the 

interaction between them. 

where: D− is coefficient of diffusion for electrons. If the electrons are well localized the 

coefficient D− is set to zero. In our case it was necessary to set this coefficient to the value 

close to zero (D− > 0) because of numerical speculation. Such systems have incredible 

susceptibility to instability, but there are methods that miraculously eliminate this problem. 

 

4. Numerical methodology 

The goal is to construct a numerical method that allows us to approximate the unknown 

analytic solution u(x,t) reasonably well in discrete grid points. Then the simplified diffusion 

equation looks like this:      
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Previous equation can be simplified by incorporating variable α, which is expressed as 

x

t
2




 

Using the definition of α, the equation can be rewritten as: 

uuuuuu jijijijijiji 1,11,1,1,1,,1
)22()22(


   (5) 

or in “compressed” matrix format as: 

nonumberBIBI VV jj
/)2()2(

1



     (6) 

Using this matrix we can rewrite the numerical scheme to a simple set of equations: 
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which form in fact a time discretization scheme.  An important advantage of this scheme 

is that the numerical stability is guaranteed for all possible combinations of time (∆t) and 

space (∆x2) and is named after its inventors, Crank and Nicolson. Computational grid for 

the Crank- Nicolson scheme is shown in Fig. 1. 

 
Fig.1: Calculation grid for the Crank-Nicolson scheme. The scheme combines backward and 

forward Euler schemes, respectively. The scheme yields a truncation in time which goes from 

O(Δt
2
) and it is stable for all possible combinations of (Δt)  and (Δx

2
).   

 

The last step is to split the solution into two parts (positron and electrons) and add a function 

f(u+ (x, t), u− (x, t)) that describes the reaction between positrons and electrons. In 

a compressed matrix form it can be written as: 
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Where A
(1)

=


 BI 2 and A
(2)

=


 BI 2 refers to positron and V
(-)

 to electrons. Time and 

space discretization was carried out as shown in Fig. 2. 
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Fig. 2: Time and space evolution of positron distribution of concentration with periodical 

border conditions and uniform distributed electron- upper panel and with a grain boundary 

which is populated by extra electrons- lower panel.  In both cases, the arrow points to the 

location where the positron was generated. In cases where the positron was generated in the 

vicinity of a grain boundary it is clearly visible, that the positron aims towards the grain 

boundary which is populated by electrons. 

 

5. Numerical methodology 

As has been mentioned it the beginning, that this article is an introduction how to 

explore further the possibilities of numerical simulation of positron diffusion in a crystal 

lattice. Despite of many difficulties it has been shown that the Crank - Nicolson method is 

sufficiently stable also in long time simulations and independent on the time and space 

discretization. Also the diffu- sion model in conjunction with the scheme, which describes 

the interaction between electrons and positrons, can say many in the future. We have 

concluded that the model and method of calculation may be used to simulate the behavior of 

positrons in inhomogeneous environment and certainly we will consider this problem in the 

future. 
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