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1. Abstract

This paper is a theoretical prelude to future work involving positron diffusion in solids
for the purpose of positron annihilation lifetime spectroscopy (PALS). PALS is a powerful
tool used to study defects present in materials. However, the behavior of positrons in solids is
a process hard to describe. Various models have been established to undertake this task. Our
preliminary model is based on the Diffusion Trapping Model (DTM) described by partial
differential Fokker-Planck equation and is solved via time discretization. Fokker-Planck
equation describes the time evolution of the probability density function of velocity of a
particle under the influence of various forces.

2. Introduction

The technique of positron annihilation is currently widely used method for detecting
defects in solids. The technique operates on the principle that a positron annihilates through
interaction with electrons. It is well known that a positron prior the annihilation with an
electron in condensed matter spends a finite time 100-300 ps, randomly wandering within
the material with thermal energies. The behavior of positrons in molecules or condensed
matter is nontrivial due to the strong correlation between electrons and positrons. Even the
simplest model that of a single positron imbedded in a homogeneous gas of electrons has
proven to be a significant challenge for theory. Positrons attract electrons resulting in
increased contact density and hence increased annihilation rate. Furthermore, the momentum
density of annihilating electron-positron pairs is increased near the Fermi surface. High
sensitivity and good response to the structural defects has destined this technique for use in
material engineering. Although it is a promising technology, it remains problematic to
process and interpret measured data. For this reason, experimental methods are usually
combined with other simulation experiments. With the advent of computers it is possible to
realize many refined numerical methods. We can mention the following: Tamm-Dancoff
approximation [1], Fermi [2] and perturbed hypernetted chain approximations [3], density
functional theory methods [4] and quantum Monte Carlo [5, 6]. Today it is generally
accepted as a fact, that a calculation based on the two component density functional theory
(TC DFT) is the best what can be offered. However some areas remain in which numerical
experiments are unusable, for instance positron annihilation in strongly inhomogeneous
materials. In this case it is required to replace purely quantum mechanical approach for
something simpler. Simplification based on an approximation of diffusion model has been
found as a good idea. This paper is a theoretical prelude to future work involving positron
diffusion in solids for the purpose of positron annihilation lifetime spectroscopy. The model is
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based on the Diffusion Trapping Model (DTM) described by partial differential equation and
is solved via time and space discretization. An important result of the study is that he
diffusion model can describe the time evolution of the positron density under the influence of
grain boundary in a solid.

3. Diffusion Trapping Model (DTM)

The theoretical description of the positron diffusion comprises two approaches. The simplest
approach assumes that during thermalization the positrons are located in two distinct regions
of a sample, grain and its boundary, in which they subsequently annihilate [7, 8]. Therefore,
only the volume ratio of the two regions is important and the positron diffusion process can
be neglected. In the second approach the positron diffusion is taken into account, however at
a certain level of calculations approximations are introduced to adjust the resulting solution
to fit the well known results obtained using the Standard Trapping Model where diffusion is
neglected [9]. Nevertheless, several authors have obtained solutions of the positron diffusion
equation for particular cases [10, 11]. Also Monte-Carlo simulations of positron diffusion in
spherical and ellipsoidal grains were carried out by Htbner et al. [12]. The main assumption
of DTM is that the grain boundary is a perfect sink for positrons in which they are localized
and annihilate with the rate xb:i < 2 (Smoluchowski boundary condition) . In the interior

of the grains, positrons can randomly move and annihilate with the rate x,f:# , where 15 is the

positron lifetime in a free state. The movement of positron looks pretty chaotic. Chaotic
movements can be simulated using diffusion which could be mathematically described by the
following Fokker-Planck equation,
ou(x,t) ou(x,t) 0 ou(x,t)
a9 TxDWT @)

where 0 and D, are coefficients of diffusion. Note, D, depends on space, but in
following discussion it will not be considered. The Fokker-Planck equation is a second
order differential equation which describes the time evolution of the concentration (well
probability distribution) in time and space of the positron. In general the Fokker-Planck
equation can be derived from the Chapman-Kolmogorov equation, but also corresponds to
the time dependence given by a Langevin equation. To simulate the interaction between
positron and electrons which gather at grain boundaries a single equation is not enough.
One more equation needs to be added for electrons and a function which describes the
interaction between them.

ou, (xt) _ D ou.(x0)

P oy +fu, (U (1) @)
—8u5(tx’t) = D_—a gx(zx Y f (U, (. u_(x) (3)

where: D_ is coefficient of diffusion for electrons. If the electrons are well localized the
coefficient D_ is set to zero. In our case it was necessary to set this coefficient to the value
close to zero (D- > 0) because of numerical speculation. Such systems have incredible
susceptibility to instability, but there are methods that miraculously eliminate this problem.

4. Numerical methodology

The goal is to construct a numerical method that allows us to approximate the unknown
analytic solution u(x,t) reasonably well in discrete grid points. Then the simplified diffusion
equation looks like this:
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Previous equation can be simplified by incorporating variable o, which is expressed as At >
AX
Using the definition of a, the equation can be rewritten as:
“2Uig,; (2+2a) Ui = %Uiy; = Ui ™ (2-2a) Ui Ui ()
or in “compressed” matrix format as:
(21+aB)\/ ,=(21-aB)\/, ,/nonumber (6)
Using this matrix we can rewrite the numerical scheme to a simple set of equations:
V,=@i+aB)'@i-aB)V @)

which form in fact a time discretization scheme. An important advantage of this scheme
is that the numerical stability is guaranteed for all possible combinations of time (At) and
space (Ax?) and is named after its inventors, Crank and Nicolson. Computational grid for
the Crank- Nicolson scheme is shown in Fig. 1.
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Fig.1: Calculation grid for the Crank-Nicolson scheme. The scheme combines backward and

forward Euler schemes, respectively. The scheme yields a truncation in time which goes from
O(Atz) and it is stable for all possible combinations of (At) and (sz).

The last step is to split the solution into two parts (positron and electrons) and add a function
f(us(x, 1), u_(x, t)) that describes the reaction between positrons and electrons. In
a compressed matrix form it can be written as:

A(l)vj(:—?j: A(Z)\/j(+) 1, )
A(l)vj(zj: A(Z)Vj(—) ~f, 9)

Where AY=21+aBand A®=21-aBrefers to positron and V to electrons. Time and
space discretization was carried out as shown in Fig. 2.
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Fig. 2: Time and space evolution of positron distribution of concentration with periodical
border conditions and uniform distributed electron- upper panel and with a grain boundary
which is populated by extra electrons- lower panel. In both cases, the arrow points to the
location where the positron was generated. In cases where the positron was generated in the
vicinity of a grain boundary it is clearly visible, that the positron aims towards the grain
boundary which is populated by electrons.
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5. Numerical methodology

As has been mentioned it the beginning, that this article is an introduction how to
explore further the possibilities of numerical simulation of positron diffusion in a crystal
lattice. Despite of many difficulties it has been shown that the Crank - Nicolson method is
sufficiently stable also in long time simulations and independent on the time and space
discretization. Also the diffu- sion model in conjunction with the scheme, which describes
the interaction between electrons and positrons, can say many in the future. We have
concluded that the model and method of calculation may be used to simulate the behavior of
positrons in inhomogeneous environment and certainly we will consider this problem in the
future.
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