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1. Introduction 

 The power line is from mechanical point of view a 3D system. It can be loaded in 

longitudinal, horizontal and vertical direction. Also the torsional loading is possible as well. 

But in the technical calculations it is mostly simplified to the one dimensional system. In the 

literature, e. g [1], an analytical method is presented for the power line elasto-static analysis 

in its vertical plane. The analytical methods are not much effective for the general spatial 

analysis. The more effective are the numerical methods, over all the finite element method. 

For the simple elasto-static analysis the geometrically nonlinear link finite element can be 

used that is able to analyze the tensional forces and stresses, and the elongation of the line, 

e.g. [2]. For dynamic analysis, the beam finite element is preferable [3]. The heterogeneous 

cross-section are of several construction, e.g. as shown in Fig.1 [4]. Because the material of 

the power line is inhomogeneous, the homogenization of material properties is needed. 

Therefore, the axial, flexural and torsional stiffness must be stated. For the mechanical 

analysis also the solid finite elements are available, but modeling of the complicated 

geometry and heterogeneity is a very demanding procedure. 

 In this paper, the results of elasto-static analysis of the single and bundle AlFe power 

lines are presented.  
 

 
Fig. 1. Construction of AlFe power line cross-section [4]. 

 

For modeling and simulation of the problem a new 3D composite beam finite element 

is used, which was developed at our institute [3]. The second order beam theory has been 

used for the finite element stiffness matrix formulation. The effective tensional, flexural and 

torsional stiffness of chosen power lines are considered [3]. The results are calculated, 

evaluated and compared with the ones obtained by the standard finite element software [2]. 

  

2. Composite finite beam element equations 

Let us consider a 3D straight finite beam element (Timoshenko beam theory and 

Saint-Venant torsion theory) of doubly symmetric cross-section – Fig. 2. The nodal degrees 
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of freedom at node i are: the displacements ui, vi, wi in the local axis direction x, y, z, and the 

cross-sectional area rotations - 
iziyix ,,, ,,  . The degrees of freedom at the node j are denoted 

in a similar manner. The internal forces at node i are: the axial force Ni, the transversal forces 

iyR ,
 and

izR ,
, the bending moments 

iyM ,
 and 

izM ,
, and the torsion moment 

ixM ,
. The first 

derivative with respect to x of the relevant variable is denoted with an apostrophe “ ´ ”. 

 

 

Fig. 2:  The local internal variables and loads. 

Furthermore,  xnn
xx

  is the axial force distribution,  xqq
zz

  and  xqq
yy

  are the 

transversal and lateral force distributions,    xmmxmm yyxx  ,  and  xmm
zz

  are the 

distributed moments, A is the cross-sectional area, yI and zI  are the second area moments, 

zyp III   is the area polar moment. The effective homogenized and longitudinally varying 

stiffness reads:  AxEEA NH

L  is the axial stiffness (   NH

L

NH

L
ExE  is the effective elasticity 

modulus for axial loading),   y

HM

Ly IxEEI y  is the flexural stiffness about the y-axis (

  HM

L

HM

L

yy ExE  is the effective elasticity modulus for bending about axis y),   z

HM

Lz IxEEI z  

is the flexural stiffness about the axis z, (   HM

L

HM

L

zz ExE  is the effective elasticity modulus for 

bending about axis z),   AkxGAG sm

y

H

Lyy   is the reduced shear stiffness in y – direction (

  H

Ly

H

Ly
GxG   is the effective shear modulus and 

sm

yk is the average shear correction factor in y 

– direction [5]),   AkxGAG sm

z

H

Lzz   is the reduced shear stiffness in z – direction (   H

Lz

H

Lz
GxG   

is the effective shear modulus and 
sm

zk is the average shear correction factor in z – direction 

[5]),   T

HM

L IxG x  is the effective torsional stiffness (   HM

L

HM

L

xx GxG   is the torsional elasticity 

modulus and TI  is the torsion constant). Detailed derivation of the effective material 

properties is presented in [3] and [4]. Establishing of the local composite beam finite element 

equations is presented in [6]: 
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       (1) 

In (1), the terms 
jiK ,
 contain the linear and the linearized geometric non-linear stiffness terms 

– containing the axial force effect on the flexural beam stiffness. Shear correction is 

accounted as well. The global stiffness matrix of the beam structures can be done by classical 

methods. Establishing of the local and global stiffness matrices as well as the whole solution 

procedure were coded by the software MATHEMATICA [7]. 

 

3. Numerical experiments  

The symmetric power line marked as 450AlFe6 (3+9 steel and 11+17 aluminum 

wires), which is loaded in its initial state by the self-weight in y-direction, has been 

considered. Span of the power line is L = 300 m, the maximal deflection is m966,3max y  

and the average internal axial force is N
II
 = 49.566 kN. The power line is subsequently loaded 

at its midpoint by forces 100yF N and 100zF  N. The diameter of the aluminum wires 

is dAl = 4,5 mm and the diameter of the steel wires is dFe = 2,8 mm. The effective cross-

sections of the power line parts are: AFe = 73,89 mm
2
, AAl = 445,32 mm

2
 and the effective 

cross-sectional area of the power line is A = 519,21 mm
2
. 

 

 

Fig. 3:  AlFe power line in initial state consequently loaded by concentrated forces.  

 Material properties of the components are constant and their values are: aluminum – 

the elasticity modulus GPa70AlE , the Poisson’s ratio 32,0Al , the mass density 
3kgm2700 Al ; steel – the elasticity modulus GPa210FeE , the Poisson’s ratio 

28,0Fe , the mass density 3kgm7850 Fe . 

 For the elasto-static analysis of the single power lines the following effective material 

properties have been used [3]:  

 the effective elasticity modulus for axial loading - MPa76,89923NH

LE  

 the flexural stiffness - MPa55,97146
HM

L

HM

L
zy EE  
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 the effective shear modulus - MPa06,34586 H

Lz

H

Ly GG  

 the torsional elasticity modulus -   MPa28090,28 xG
HM

L
x  

The following calculations were done with our 3D FGM beam finite element (NFE). The 

same problem has been solved using a commercial FEM program ANSYS with 300 of beam 

finite elements (BEAM188). The global displacements v [m] in (y – direction) and w [m] in (z 

– direction) at distances x of 50, 100 and 150 m from the left line end, calculated with 

ANSYS as well as with the NFE are presented in Table 1. The average relative difference 
[%] between displacements calculated by our NFE-method and the ANSYS solution has been 

evaluated, as well. 

 

Tab. 1.  Spatial displacements at the selected points (DSP) of the AlFe power line. 

DSP NFE ANSYS  [%] 

50 
v50 -2,2229 -2,2255 0,12 

w50 0,0499 0,0497 0,40 

100 
v100 -3,5776 -3,5802 0,07 

w100 0,0999 0,0994 0,50 

150 
v150 -4.0619 -4,0627 0,02 

v150 0,1492 0,1491 0,07 

 

The comparison of total displacement of the AlFe power line calculated by our new approach 

and commercial FEM program ANSYS is shown in Figure 4. 

 

 

Fig. 4:  Total displacement of the power line. 

The local internal forces and moments in the power line can be calculated from the local 

displacements at the finite elements nodal points. According to the given loads and the low 

power line stiffness for bending, the relevant internal force is the axial tensional force  xN . 

Its maximal value is at the left and right line end: 50,324 max N  kN. The average normal 

stress is     AxNx /  and the normal strain     NH

LExx /   at the x-position. Because of 

different elasticity modulus of the aluminum and the steel a different normal stress in the 

material components will be arise. Position of the critical cross section (were the maximal 

normal force arises) is at the left and right end of the power line. In our case, the maximal 

stress for the alumina is    51,750max   AlxAl Ex  MPa and for steel 

   53,2260max   FexFe Ex  MPa. 
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4. Conclusions 

New composite beam finite element was used for the elasto-static analysis of the 

power line. Homogenization of the heterogeneous material properties was made by the 

reference volume method (RVE). For comparison of the effectiveness and accuracy of the 

new finite element the same problem was solved by the commercial FEM software ANSYS. 

A very good agreement of both results has been obtained. The most advantage of the new 

beam finite element is that the stiffness matrix contains the effect of axial force, and all the 

stiffness (tensional, flexural and torsional) are calculated by a consistent manner.  
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