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1. Introduction

The power line is from mechanical point of view a 3D system. It can be loaded in
longitudinal, horizontal and vertical direction. Also the torsional loading is possible as well.
But in the technical calculations it is mostly simplified to the one dimensional system. In the
literature, e. g [1], an analytical method is presented for the power line elasto-static analysis
in its vertical plane. The analytical methods are not much effective for the general spatial
analysis. The more effective are the numerical methods, over all the finite element method.
For the simple elasto-static analysis the geometrically nonlinear link finite element can be
used that is able to analyze the tensional forces and stresses, and the elongation of the line,
e.g. [2]. For dynamic analysis, the beam finite element is preferable [3]. The heterogeneous
cross-section are of several construction, e.g. as shown in Fig.1 [4]. Because the material of
the power line is inhomogeneous, the homogenization of material properties is needed.
Therefore, the axial, flexural and torsional stiffness must be stated. For the mechanical
analysis also the solid finite elements are available, but modeling of the complicated
geometry and heterogeneity is a very demanding procedure.

In this paper, the results of elasto-static analysis of the single and bundle AlFe power
lines are presented.

Fig. 1. Construction of AlFe power line cross-section [4].

For modeling and simulation of the problem a new 3D composite beam finite element
is used, which was developed at our institute [3]. The second order beam theory has been
used for the finite element stiffness matrix formulation. The effective tensional, flexural and
torsional stiffness of chosen power lines are considered [3]. The results are calculated,
evaluated and compared with the ones obtained by the standard finite element software [2].

2. Composite finite beam element equations

Let us consider a 3D straight finite beam element (Timoshenko beam theory and
Saint-Venant torsion theory) of doubly symmetric cross-section — Fig. 2. The nodal degrees
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of freedom at node i are: the displacements u;, v;, w; in the local axis direction x, y, z, and the
cross-sectional area rotations - ¢, ;,@, ;,¢,,. The degrees of freedom at the node j are denoted

in a similar manner. The internal forces at node i are: the axial force N;, the transversal forces

R,; andR,;, the bending moments M ; and M,;, and the torsion moment M ;. The first

derivative with respect to x of the relevant variable is denoted with an apostrophe « .

z,i!

m() 4x) m@)

Fig. 2: The local internal variables and loads.

Furthermore, n, =n,(x) is the axial force distribution, g, =q,(x) and q, =q,(x) are the
transversal and lateral force distributions, m, =m,(x), m, =m,(x) and m, =m,(x) are the
distributed moments, A is the cross-sectional area, I, and |, are the second area moments,
I,=1,+1, is the area polar moment. The effective homogenized and longitudinally varying
stiffness reads: EA=E"(x)A is the axial stiffness (E™ (x)=E is the effective elasticity

modulus for axial loading), EI, :ELMVH(X)I is the flexural stiffness about the y-axis (

y
E""(x)= E""is the effective elasticity modulus for bending about axis y), EI, = EM" (x)I,
is the flexural stiffness about the axis z, (E)"*" (x)= E"" is the effective elasticity modulus for

bending about axis z), GAy =G/} (x)k;"A is the reduced shear stiffness in y — direction (
G!!(x)=G" is the effective shear modulus and k;" is the average shear correction factor in y
— direction [5]), GA; =G/ (x)k:"A is the reduced shear stiffness in z — direction (G! (x)=G!"
is the effective shear modulus and k:"is the average shear correction factor in z — direction
[5]), G"*" (x)I; is the effective torsional stiffness (G (x)=G"" is the torsional elasticity

modulus and |, is the torsion constant). Detailed derivation of the effective material

properties is presented in [3] and [4]. Establishing of the local composite beam finite element
equations is presented in [6]:
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In (1), the terms K ; contain the linear and the linearized geometric non-linear stiffness terms

— containing the axial force effect on the flexural beam stiffness. Shear correction is
accounted as well. The global stiffness matrix of the beam structures can be done by classical
methods. Establishing of the local and global stiffness matrices as well as the whole solution
procedure were coded by the software MATHEMATICA [7].

3. Numerical experiments

The symmetric power line marked as 450AlFe6 (3+9 steel and 11+17 aluminum
wires), which is loaded in its initial state by the self-weight in y-direction, has been
considered. Span of the power line is L =300 m, the maximal deflection is y, . =3,966m
and the average internal axial force is N" = 49.566 kN. The power line is subsequently loaded
at its midpoint by forces F, =—-100N and F, =100 N. The diameter of the aluminum wires

is da = 4,5 mm and the diameter of the steel wires is dge = 2,8 mm. The effective cross-
sections of the power line parts are: Are = 73,89 mm?, Ay = 445,32 mm? and the effective
cross-sectional area of the power line is A = 519,21 mm?.

steel

aluminium

Fig. 3: AlFe power line in initial state consequently loaded by concentrated forces.

Material properties of the components are constant and their values are: aluminum —
the elasticity modulus E, =70GPa, the Poisson’s ratio v, =0,32, the mass density

px =2700kgm>; steel — the elasticity modulus E. =210 GPa, the Poisson’s ratio

Ve, =0,28, the mass density p., = 7850 kgm >,

For the elasto-static analysis of the single power lines the following effective material
properties have been used [3]:

e the effective elasticity modulus for axial loading - E" =89923,76 MPa

o the flexural stiffness - E,""" = EM" =97146,55 MPa
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o the effective shear modulus - G[, =G/; =34586,06 MPa

o the torsional elasticity modulus - G!***(x)=28090,28 MPa

The following calculations were done with our 3D FGM beam finite element (NFE). The
same problem has been solved using a commercial FEM program ANSY'S with 300 of beam
finite elements (BEAM188). The global displacements v [m] in (y — direction) and w [m] in (z
— direction) at distances x of 50, 100 and 150 m from the left line end, calculated with
ANSYS as well as with the NFE are presented in Table 1. The average relative difference A
[%] between displacements calculated by our NFE-method and the ANSY'S solution has been
evaluated, as well.

Tab. 1. Spatial displacements at the selected points (DSP) of the AlFe power line.

DSP NFE | ANSYS | A[%]

Vso | -2,2229 | -2,2255 | 0,12

>0 Wso | 0,0499 | 0,0497 | 0,40
Lop | Vi | -35776 | -35802 | 007
Wio | 0,0999 | 0,0994 | 0,50

15p | Vi | 40619 | -40627 | 0,02
Viso | 0,1492 | 0,1491 | 0,07

The comparison of total displacement of the AlFe power line calculated by our new approach
and commercial FEM program ANSYS is shown in Figure 4.
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Fig. 4: Total displacement of the power line.

The local internal forces and moments in the power line can be calculated from the local
displacements at the finite elements nodal points. According to the given loads and the low
power line stiffness for bending, the relevant internal force is the axial tensional force N(x).

Its maximal value is at the left and right line end: N, =50,324 kN. The average normal

stress is o(x)=N(x)/ A and the normal strain &(x)=c(x)/E" at the x-position. Because of
different elasticity modulus of the aluminum and the steel a different normal stress in the
material components will be arise. Position of the critical cross section (were the maximal

normal force arises) is at the left and right end of the power line. In our case, the maximal
stress for the alumina is o, =[6(X) ,Ey =7551 MPa and for steel
= [£(x)] o Er. = 226,53 MPa.

Gmax Fe
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4. Conclusions

New composite beam finite element was used for the elasto-static analysis of the
power line. Homogenization of the heterogeneous material properties was made by the
reference volume method (RVE). For comparison of the effectiveness and accuracy of the
new finite element the same problem was solved by the commercial FEM software ANSYS.
A very good agreement of both results has been obtained. The most advantage of the new
beam finite element is that the stiffness matrix contains the effect of axial force, and all the
stiffness (tensional, flexural and torsional) are calculated by a consistent manner.
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