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1. Introduction 

Power lines are made from wires of various metals, mainly in order to increase the 

strength of the cable or to decrease nominal weight of the power line.Different combinations 

of materials are used in practice, mainly from aluminium with steel core (AlFe). 

To model the real AlFe power line with its real construction is complicated due to its 

complicated geometry and heterogeneity. So the simplified models are used. That is the 

reason why homogenized material properties have to be calculated. The heterogeneous cross-

section are of several construction, e.g. as shown in Fig.1. Because the material of the power 

line is inhomogeneous, the homogenization of material properties is needed.  

In the praxis (e.g. [1]) the effective material properties are calculated by means of the 

mixture rules. The effective elasticity modulus for tension is calculated, which is then used 

for the elastostatic and modal analysis of the power lines. It provided only the planar 

deformation of the line. In [2], the calculation of the effective elasticity modulus for the 

bending is presented. For the standard 3D beam finite element [3], the elasticity modulus for 

shear and torsion is calculated from the elasticity modulus for tension and the Poisson ration. 

These simplifications can decrease the solution results accuracy. 

In the proposed contribution, the homogenization of material properties of the AlFe 

power lineis presented, which is then used for calculation of the of the effective electric, 

thermal and elastic material properties for the selected power line cross-section. 
 

 
Fig. 1. Construction of AlFe power line cross-section. 

2. Homogenization theory 

One important goal of mechanics of heterogeneous materials is to derive their 

effectiveproperties from the knowledge of the constitutive laws and complex micro-structural 

behavior of their components. 

The methods based on the homogenization theory (e.g. the mixture rules [4]; self-

consistentmethods [5]) have been designed and successfully applied to determine theeffective 

material properties of heterogeneous materials from the corresponding materialbehavior of 

the constituents (and of the interfaces between them) and from the geometricalarrangement of 

the phases. In this context, the microstructure of the material underconsideration is basically 

taken into account by the Representative Volume Element (RVE). 
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Modeling of composite structures is the area of interest at our institute. The mixtures 

rules were extended [6] that are very often used in homogenization of composites properties. 

There, two different methods for modeling of Functionally Graded Material (FGM) beam 

with spatial variation of material properties were derived – the multilayered method – MLM 

(Fig. 2) and later the direct integration method [7]. These homogenization techniques can also 

be used for homogenization of the AlFe cables.  

 From the assumption that the corresponding property (electric conductance, the 

thermal conductance, the thermal expansion, the stiffness) of the real beam is equal to the 

analogical property of the homogenized beam the homogenized material properties can be 

calculated. 

In case of the power line, the material properties vary layer-wise in the radial 

direction. The longitudinal variation is not assumed. The MLM has been used in the 

following consideration. 
 

 
Fig. 2. Homogenization - multilayered method. 

The effective electric conductance 
H

L can be calculated by: 

The effective thermal conductance
H

L  is: 

The effective thermal expansion coefficient
H

TL is: 
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 is the cross-sectional area of the whole real cross-section. Ek is the elasticity 

modulus of the relevant layer, and n is number of the layer. 

Since the Young’s modulus multiplied by the cross-sectional area defines the axialstiffness 

and multiplied by the moment of inertia of cross-section area defines thebending stiffness, we 
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have to distinguish homogenized effective Young’s modulus foraxial loading 
NH

LE and 

homogenized effective Young’s modulus for bending 
HM

L
yE  and 

HM

L
zE .  

The effective elasticity modulus for axial loading is:   

The elasticity modulus for lateral and transversal bending are:  

where 



n

k

yky II
1

and 



n

k

zkz II
1

 are the quadratic moment of inertia according the axis yand 

according the axis z. In many cases holds that HM

L

HM

L
zy EE  . 

The effective elasticity modulus for lateral and transversal shear   

where  kkk EG  12/   is the shear modulus of the k
th

layerand k  is its Poisson ratio. 

Again, 
sm

kyk ,  and 
sm

yk  is the shear correction factor for the k
th

layer and the whole cross-

section, respectively. These constants have to be calculated by special method [8]. 

The effective elasticity modulus for torsion is:    

where zyp III  is the cross-sectional area polar moment of inertia. 

The effective mass density for axial beam vibration is: 

The effective mass density for torsional vibration is:   

There, k  is the mass density of the k
th

layer. 

 

 

3. Homogenization of the AlFe power line 

The power line marked as 450AlFe6 (consist of 3+9 steel and 11+17 aluminum 

wires)has been considered (as shown in Figure 3), The diameter of the aluminum wires is 

dAl=4,5 mm and the diameter of the steel wires is dFe = 2,8 mm.  
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Fig.3: Power line cross-section. 
 

Material properties of the components are constant and their values are in Table 1: 
 

Tab. 1. Material properties of the AlFe power line components. 

Material properties aluminum steel 

electric conductivity  [S/m] 71055,3   7101  

thermal conductivity  [Wm
-1

K
-1

] 237 80,4 

elasticity modulus E [GPa] 70 210 
Poisson’s ratio  [-] 0,32 0,28 

thermal expansion coefficient T  [K
-1

] 6101,23   6108,11   

mass density   [kgm
-3

] 2700 7850 
 

The principle of calculation of the quadratic moment of inertia for cable is shown in 

Fig. 3. Here,Rk is pitch circle, dk is wire diameter, φk is the angle of circumferential position 

of the wire, zk and yk are the distances of the wire from the center of the power line cross-

section. These distances of each wire can be calculated as follows:   

Then the quadratic moment of the k
th

wire cross-sectional area 4/2

kk dA   according the 

axis y can be calculated by equation (10) and according the axis z by equation (11).  

The polar moment of the wire cross-sectional area to origin of the coordinate system x, y is  

The effective cross-sections of the power line 450AlFe6 parts are: AFe = 73,89 mm
2
, 

AAl = 445,32 mm
2
 and the effective cross-sectional area of the power line is A = 519,21 mm

2
. 

The effective quadratic moments of inertia of the power line cross-sectional area are: 

Iz = Iy = 28528,3 mm
4
.  

 The effective material properties of the selected single power lines calculated by 

expressions (1)-(9) are the following:  

 the effective electric conductance - 
-17 Sm101871.3 H

L  

 the effective thermal conductance - 
11KWm71,214 H

L  

 the effectivethermal expansion coefficient - 
15 K109743,1 H

TL  

 the effective elasticity modulus for axial loading - MPa76,89923NH
LE  

 kkk Ry sin  (10) 

 kkk Rz cos  (11) 
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 the flexural stiffness - MPa55,97146
HM

L

HM

L
zy EE  

 the effective shear modulus - MPa06,34586 H
Lz

H
Ly GG  

 the torsional elasticity modulus -   MPa28090,28 xG
HM

L
x  

 effective mass density for axial beam vibration- -3kgm3432,91 NH
L  

 effective mass density for torsional vibration- -3kgm2811,94 NH
L  

 

4. Conclusion 

In this paper the homogenization of material properties of the AlFe power line has been 

presented. The advantages of this homogenization approach are that not only effective 

elasticity modulus for tension and for the bending has been evaluated but also the elasticity 

modulus for shear and torsion can be calculated. These homogenized material properties than 

can be used in elastostatic and modal analysis of the power lines by our new beam finite 

element [9, 10]. 
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