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1. Introduction

Power lines are made from wires of various metals, mainly in order to increase the
strength of the cable or to decrease nominal weight of the power line.Different combinations
of materials are used in practice, mainly from aluminium with steel core (AlFe).

To model the real AlFe power line with its real construction is complicated due to its
complicated geometry and heterogeneity. So the simplified models are used. That is the
reason why homogenized material properties have to be calculated. The heterogeneous cross-
section are of several construction, e.g. as shown in Fig.1. Because the material of the power
line is inhomogeneous, the homogenization of material properties is needed.

In the praxis (e.g. [1]) the effective material properties are calculated by means of the
mixture rules. The effective elasticity modulus for tension is calculated, which is then used
for the elastostatic and modal analysis of the power lines. It provided only the planar
deformation of the line. In [2], the calculation of the effective elasticity modulus for the
bending is presented. For the standard 3D beam finite element [3], the elasticity modulus for
shear and torsion is calculated from the elasticity modulus for tension and the Poisson ration.
These simplifications can decrease the solution results accuracy.

In the proposed contribution, the homogenization of material properties of the AlFe
power lineis presented, which is then used for calculation of the of the effective electric,
thermal and elastic material properties for the selected power line cross-section.

Fig. 1. Construction of AlFe power line cross-section.

2. Homogenization theory

One important goal of mechanics of heterogeneous materials is to derive their
effectiveproperties from the knowledge of the constitutive laws and complex micro-structural
behavior of their components.

The methods based on the homogenization theory (e.g. the mixture rules [4]; self-
consistentmethods [5]) have been designed and successfully applied to determine theeffective
material properties of heterogeneous materials from the corresponding materialbehavior of
the constituents (and of the interfaces between them) and from the geometricalarrangement of
the phases. In this context, the microstructure of the material underconsideration is basically
taken into account by the Representative Volume Element (RVE).
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Modeling of composite structures is the area of interest at our institute. The mixtures
rules were extended [6] that are very often used in homogenization of composites properties.
There, two different methods for modeling of Functionally Graded Material (FGM) beam
with spatial variation of material properties were derived — the multilayered method — MLM
(Fig. 2) and later the direct integration method [7]. These homogenization techniques can also
be used for homogenization of the AlFe cables.

From the assumption that the corresponding property (electric conductance, the
thermal conductance, the thermal expansion, the stiffness) of the real beam is equal to the
analogical property of the homogenized beam the homogenized material properties can be
calculated.

In case of the power line, the material properties vary layer-wise in the radial
direction. The longitudinal variation is not assumed. The MLM has been used in the
following consideration.

a) multilayer beam
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Fig. 2. Homogenization - multilayered method.

The effective electric conductance 7, can be calculated by:
v
o 27 A @
: A

The effective thermal conductance A" is:
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The effective thermal expansion coefficient o] is:
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Here, A= z A, is the cross-sectional area of the whole real cross-section. E is the elasticity

k=1
modulus of the relevant layer, and n is number of the layer.
Since the Young’s modulus multiplied by the cross-sectional area defines the axialstiffness
and multiplied by the moment of inertia of cross-section area defines thebending stiffness, we
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have to distinguish homogenized effective Young’s modulus foraxial loading E;'"and

homogenized effective Young’s modulus for bending EEA M and EEA o
The effective elasticity modulus for axial loading is:
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The elasticity modulus for lateral and transversal bending are:
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where I, = Z I, and I, =) 1, are the quadratic moment of inertia according the axis yand
k=1 k=1

according the axis z. In many cases holds that g, = EM:" .
The effective elasticity modulus for lateral and transversal shear
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whereG, = E, /2(1+ Vk) is the shear modulus of the k™ayerand v, is its Poisson ratio.

(6)

Again, kj”; and kjm is the shear correction factor for the k™layer and the whole cross-

section, respectively. These constants have to be calculated by special method [8].
The effective elasticity modulus for torsion is:

inl pi
GII_VIXH (X)= k=1 | (7)

p
where |, =1, +1,is the cross-sectional area polar moment of inertia.

The effective mass density for axial beam vibration is:
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The effective mass density for torsional vibration is:
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There, p, is the mass density of the k™layer.

(9)

3. Homogenization of the AlFe power line

The power line marked as 450AlFe6 (consist of 3+9 steel and 11+17 aluminum
wires)has been considered (as shown in Figure 3), The diameter of the aluminum wires is
dai=4,5 mm and the diameter of the steel wires is dr. = 2,8 mm.
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Fig.3: Power line cross-section.
Material properties of the components are constant and their values are in Table 1:

Tab. 1. Material properties of the AlFe power line components.

Material properties aluminum steel
electric conductivity y [S/m] 3,55%10’ 1x10’
thermal conductivity A [Wm™K™] 237 80,4
elasticity modulus E [GPa] 70 210
Poisson’s ratio v [-] 0,32 0,28
thermal expansion coefficienta; [K™] 231x10°° 118x10°°
mass density p [kgm™] 2700 7850

The principle of calculation of the quadratic moment of inertia for cable is shown in
Fig. 3. Here,R is pitch circle, dx is wire diameter, ¢y is the angle of circumferential position
of the wire, z¢ and yy are the distances of the wire from the center of the power line cross-
section. These distances of each wire can be calculated as follows:

Yi =R¢sing, (10)

z, =R, cos g, (11)
Then the quadratic moment of the k™wire cross-sectional area A =zd?/4 according the
axis y can be calculated by equation (10) and according the axis z by equation (11).

,’ m,’
" = k —+ Zk2 k (12)
64 4
' d,’
Ly =——+ Ykz ‘ (13)
64 4
The polar moment of the wire cross-sectional area to origin of the coordinate system x, y is
Lo =Ty + 15 (14)

The effective cross-sections of the power line 450AlFe6 parts are: Are = 73,89 mm?
An = 445,32 mm? and the effective cross-sectional area of the power line is A = 519,21 mm?.
The effective quadratic moments of inertia of the power line cross-sectional area are:
|, = I,= 28528,3 mm*.

The effective material properties of the selected single power lines calculated by
expressions (1)-(9) are the following:

e the effective electric conductance - " =3.1871x10" Sm™

e the effective thermal conductance - A' =21471Wm'K™

o the effectivethermal expansion coefficient - o] =1,9743x10° K™

e the effective elasticity modulus for axial loading - E["" =8992376 MPa
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o the flexural stiffness - E\""" = EM" = 9714655 MPa
o the effective shear modulus - G}, =G|} = 3458606 MPa

o the torsional elasticity modulus - G (x)=28090,28MPa
e effective mass density for axial beam vibration- p,'"' =3432,91kgm™
o effective mass density for torsional vibration- p'" =2811,94kgm™

4. Conclusion

In this paper the homogenization of material properties of the AlFe power line has been
presented. The advantages of this homogenization approach are that not only effective
elasticity modulus for tension and for the bending has been evaluated but also the elasticity
modulus for shear and torsion can be calculated. These homogenized material properties than
can be used in elastostatic and modal analysis of the power lines by our new beam finite
element [9, 10].
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