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1. Introduction 

Power lines under certain conditions are exposed to dynamic loads in addition to static 

ones, which can cause elastic vibrations. If a frequency of the harmonic dynamic loads is 

equal to the eigenfrequency of the line, the resonance vibrations can arise, which can result in 

mechanical damage of the power line. Therefore, the modal analysis, by which the 

eigenfrequencies and eigenmodes are stated, is needed. The power line is from mechanical 

point of view a 3D system. It can vibrate in longitudinal, horizontal, vertical direction and the 

torsional vibrations are possible as well. But in the technical calculations it is mostly 

simplified to the one dimensional system. In the literature, e.g. [1], an analytical method is 

used for the power line free vibration in its vertical plane. The analytical methods are not 

much effective for the general modal analysis. Most effective are the numerical methods, 

over all the finite element method. For dynamic analysis the beam finite element can be used. 

Because the material of the power line is inhomogeneous, the homogenization of material 

properties is needed.  

For modeling and simulation of the problem a new 3D composite beam finite element is 

used, which was developed at our institute [2]. The second order beam theory has been used 

for the finite element stiffness and mass matrix formulation. In this paper, the tensional, 

flexural and torsional eigenmodes of chosen power lines are analysed.  

 

2. Modeling of the AlFe power line 

The symmetric power line marked as 450AlFe6 has been considered. This power line 

consists of 3+9 steel and 11+17 aluminium wires (see Fig. 1).  

 

Fig. 1. Heterogeneous cross-section of the used AlFe power line 

 

The diameter of the aluminium wires is dAl = 4.5 mm and the diameter of the steel wires is 

dFe = 2.8 mm. The effective cross-sections of the power line parts are: AFe = 73.89 mm
2
, 
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AAl = 445.32 mm
2
 and the effective cross-sectional area of the whole power line is  

A = 519.21 mm
2
. The span is L = 300 m with differing attachment levels (see Fig. 2). For 

bundled conductors there are used spacer dampers with cross-section area ASD = 225 mm
2
.  

 
Fig. 2. Span with differing attachment levels – a) single power line, b) double bundle power 

line, c) triple bundle power line 

Material properties for power line are: steel – Young’s modulus EFe = 210 GPa, Poisson’s 

ratio Fe = 0.28, material density Fe = 7850 kg.m
-3

; aluminium – Young’s modulus  

EAl = 70 GPa, Poisson’s ratio Al = 0.32, material density Al = 2700 kg.m
-3

. Material 

properties for spacer dampers are: Young’s modulus ESD = 75 GPa, Poisson’s ratio  

SD = 0.33, material density SD = 2730 kg.m
-3

. 

To create a FEM model for modal analysis it is important to calculate the place of 

maximal deflection and maximal length of the power lines after extension in static state. At 

first the gravity load q [N.m
-1

] of the power line is calculated using formula [1], [3], [4]: 

 gmq .  (1) 

where m [kg.m
-1

] is the nominal weight of the power line, g [m.s
-2

] is the standard gravity. 
The catenary parameter [1], [3], [4] is: 

 
zq

F
c HH

.


  (2) 

where FH [N] is the horizontal force at the point of maximal deflection of power line, H [Pa] 

is the horizontal stress in power line,  [N.m
-3

] is the unit weight per cross-section and  

z [-] is the weather load factor (eq. icing, wind or combination of these loads). For this case 

we do not consider with these loads so z = 1. The distances of maximal deflection from the 

fixing point A xa [m] and from the fixing point B xb [m] are calculated using formulas [1], 

[4]:   
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where L [m] is the length of the span, h [m] is the height difference of the attachment points 

A and B. The maximal deflection with respect to fixing point B yb [m] of the power line is 

[1], [4]: 
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and the power line length after extension LD [m] is [1], [4]: 
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The axial forces II

AN  [N] and II

BN  [N] in the power line at the fixing points A and B are: 
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3. Finite element equations of the 3D composite beam finite element and their solution 

The local beam finite element equation for modal analysis has the following formal form: 

      02  UMK   (8) 

where K is the stiffness matrix, M is the mass matrix,   is the eigenfrequency, and U is the 

nodal points displacement vector. The stiffness matrix contains also the axial force, which in 

the case of power line is the tensional force caused by the own weight. The detailed 

description of this equation can be found in our previous publications, eg in [2]. The global 

finite element equations of the beam structures can be generally established by a classical 

method.  In modal analysis the eigenvalue problem is solved. For a given axial force N, 

geometrical parameters, material and boundary conditions, the natural frequency   will be 

increased until the determinant of the matrix of the global finite element equations tends to 

zero. The natural frequency is the natural eigenfrequency from which the eigenfrequency can 

be calculated. Again, the eigenforms can be calculated. The derived equations were 

implemented into the computational program in the environment of the code 

MATHEMATICA [5]. With this program following modal analysis of the single and bundle 

power lines were done. Comparative calculation of the same tasks were also done with 

software ANSYS [6]. 

 

4. Numerical experiments 

In modal analysis the single and double bundle power lines according to Fig. 2 has been 

considered. The effective quadratic moments of inertia of the power line’s cross-section area 

are: Iz = Iy = 28528.3 mm
4
. The effective circular cross-section of power line is constant with 

diameter def = 25.71 mm, the deformed length of the power line is LD = 300.307 m and the 

height difference is h = 10 m. The axial force is N
II
 = 49700 N (for simplicity, a constant 

maximal value for the whole line length was assumed). 

The effective material properties of the used power line are [7]: 
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Calculated effective material properties have been used in the modal analyses of the 

single and double-bundle power lines. The eigenfrequencies f [Hz] of the single power lines 

have been found with a mesh 800 of BEAM188 elements of the commercial software 

ANSYS, modal analyses of double-bundle power lines have been done with mesh 1455 of 
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BEAM188 elements. The same problem was solved using the new 3D beam finite element 

(3D NFE) for modal analysis of composite beam structures [2] (the calculation has been done 

in software Mathematica). The first ten calculated eigenfrequencies of single and double 

bundle power lines are shown in Tab. 1. 

 

Tab. 1.  Eigenfrequencies of the single and double-bundle power line in the xy and xz planes. 

eigenfrequencies 

f [Hz] 

single power line eigenfrequencies 

f [Hz] 

double-bundle power line 

3D NFE ANSYS  [%] 3D NFE ANSYS  [%] 

1
st
 xz 0,2777 0,2775 0,0684 1

st
 xz 0,2777 0,2778 0,0036 

2
nd

 xy 0,3781 0,3850 -1,8276 2
nd

 xy 0,3781 0,3848 -1,7694 

3
rd

 xy 0,5550 0,5545 0,0919 3
rd

 xy 0,4033 0,4090 -1,4308 

4
th

 xz 0,5554 0,5584 -0,5402 4
th

 xy 0,5545 0,5548 -0,0649 

5
th

 xz 0,8331 0,8323 0,0948 5
th

 xz 0,5551 0,5555 -0,0703 

6
th

 xy 0,8379 0,8377 0,0179 6
th

 torsional 0,6346 0,6493 -2,3150 

7
th

 xy 1,1087 1,1097 -0,0721 7
th

 xz 0,8327 0,8332 -0,0673 

8
th

 xz 1,1094 1,1099 -0,0451 8
th

 xy 0,8370 0,8380 -0,1243 

9
th

 xz 1,3885 1,3873 0,0871 9
th

 torsional 0,9563 0,9845 -2,9520 

10
th
 xy 1,3894 1,3884 0,0713 10

th
 xy 1,1102 1,1103 -0,0027 

 

The 6
th

 and 9
th

 eigenmodes of single power line are shown in Fig. 3, the 6
th

 and 9
th

  

eigenmodes of double bundle power line are shown in Fig. 4. 

 
Fig. 3. The 6

th
and 9

th
 eigenmode of single power line 

 

 
Fig. 4. The 6

th
and 9

th
 eigenmode of double bundle power line 
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5. Conclusion 

In this paper, the results of modal analysis of the single and double bundle AlFe power 

lines with differing attachment levels are presented. For numerical simulation our new beam 

finite element and the commercial FEM software ANSYS were used. The axial, flexural and 

torsional eigenfrequencies and eigenmodes have been studied. The first ten eigenmodes for 

single power line are flexural and it can be observed from Fig. 3. In opposite, the first ten 

eigenmodes for double bundle power lines are flexural and torsional. It can be observed from 

Fig. 4. The calculations confirmed very good accurancy and effectiveness of our new beam 

finite element. The largest deviation between the NFE and ANSYS solution is occured by the 

torsional eigenfrequencies. In our new finite element is the effective torsional shear modulus 

and torsional mass density calculated by the RVE method but in ANSYS solution, the shear 

elasticity modulus is calculated from the effective elasticity modulus for bending, what is a 

simplification, which produces low accuracy of the calculation results. 
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