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1. Introduction

Power lines under certain conditions are exposed to dynamic loads in addition to static
ones, which can cause elastic vibrations. If a frequency of the harmonic dynamic loads is
equal to the eigenfrequency of the line, the resonance vibrations can arise, which can result in
mechanical damage of the power line. Therefore, the modal analysis, by which the
eigenfrequencies and eigenmodes are stated, is needed. The power line is from mechanical
point of view a 3D system. It can vibrate in longitudinal, horizontal, vertical direction and the
torsional vibrations are possible as well. But in the technical calculations it is mostly
simplified to the one dimensional system. In the literature, e.g. [1], an analytical method is
used for the power line free vibration in its vertical plane. The analytical methods are not
much effective for the general modal analysis. Most effective are the numerical methods,
over all the finite element method. For dynamic analysis the beam finite element can be used.
Because the material of the power line is inhomogeneous, the homogenization of material
properties is needed.

For modeling and simulation of the problem a new 3D composite beam finite element is
used, which was developed at our institute [2]. The second order beam theory has been used
for the finite element stiffness and mass matrix formulation. In this paper, the tensional,
flexural and torsional eigenmodes of chosen power lines are analysed.

2. Modeling of the AlFe power line
The symmetric power line marked as 450AlFe6 has been considered. This power line
consists of 3+9 steel and 11+17 aluminium wires (see Fig. 1).
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Fig. 1. Heterogeneous cross-section of the used AlFe power line

The diameter of the aluminium wires is da = 4.5 mm and the diameter of the steel wires is
dre = 2.8 mm. The effective cross-sections of the power line parts are: Ape = 73.89 mm?,
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An = 44532 mm? and the effective cross-sectional area of the whole power line is
A = 519.21 mm?. The span is L =300 m with differing attachment levels (see Fig. 2). For
bundled conductors there are used spacer dampers with cross-section area Asp = 225 mm?.
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Fig. 2. Span with differing attachment levels — a) single power line, b) double bundle power
line, c) triple bundle power line

Material properties for power line are: steel — Young’s modulus Ege = 210 GPa, Poisson’s
ratio v = 0.28, material density pre = 7850 kg.m'3; aluminium — Young’s modulus
Ea = 70 GPa, Poisson’s ratio va = 0.32, material density pa = 2700 kg.m'S. Material
properties for spacer dampers are: Young’s modulus Esp = 75 GPa, Poisson’s ratio
o = 0.33, material density psp = 2730 kg.m™.

To create a FEM model for modal analysis it is important to calculate the place of
maximal deflection and maximal length of the power lines after extension in static state. At
first the gravity load q [N.m™] of the power line is calculated using formula [1], [3], [4]:

q=mg 1)

where m [kg.m™] is the nominal weight of the power line, g [m.s?] is the standard gravity.
The catenary parameter [1], [3], [4] is:

coFn_0on )

q 7z
where Fy [N] is the horizontal force at the point of maximal deflection of power line, oy [Pa]
is the horizontal stress in power line, y [N.m®] is the unit weight per cross-section and
z [-] is the weather load factor (eq. icing, wind or combination of these loads). For this case

we do not consider with these loads so z = 1. The distances of maximal deflection from the
fixing point A x, [m] and from the fixing point B x, [m] are calculated using formulas [1],

[4]:
h
X == C ©)
h
Xy = —+C.E (4)

where L [m] is the length of the span, h [m] is the height difference of the attachment points
A and B. The maximal deflection with respect to fixing point B y, [m] of the power line is

[1], [4]:
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Yp = c{cosh[%} —1] (5)

and the power line length after extension Lp [m] is [1], [4]:

L, = c{sinh{é}ﬁinh{ﬁD ©6)
C C

The axial forces N, [N]and N& [N] in the power line at the fixing points A and B are:

N, =c.(cosh[x—a}q], ' :c.(cosh[ﬁ}qj (7
c c

3. Finite element equations of the 3D composite beam finite element and their solution
The local beam finite element equation for modal analysis has the following formal form:

K —w?M]-u]=[0] ®)

where K is the stiffness matrix, M is the mass matrix, » is the eigenfrequency, and U is the
nodal points displacement vector. The stiffness matrix contains also the axial force, which in
the case of power line is the tensional force caused by the own weight. The detailed
description of this equation can be found in our previous publications, eg in [2]. The global
finite element equations of the beam structures can be generally established by a classical
method. In modal analysis the eigenvalue problem is solved. For a given axial force N,
geometrical parameters, material and boundary conditions, the natural frequency o will be
increased until the determinant of the matrix of the global finite element equations tends to
zero. The natural frequency is the natural eigenfrequency from which the eigenfrequency can
be calculated. Again, the eigenforms can be calculated. The derived equations were
implemented into the computational program in the environment of the code
MATHEMATICA [5]. With this program following modal analysis of the single and bundle
power lines were done. Comparative calculation of the same tasks were also done with
software ANSYS [6].

4. Numerical experiments

In modal analysis the single and double bundle power lines according to Fig. 2 has been
considered. The effective quadratic moments of inertia of the power line’s cross-section area
are: I, = I, = 28528.3 mm®”. The effective circular cross-section of power line is constant with
diameter d¢s = 25.71 mm, the deformed length of the power line is Lp = 300.307 m and the
height difference is h = 10 m. The axial force is N" = 49700 N (for simplicity, a constant
maximal value for the whole line length was assumed).
The effective material properties of the used power line are [7]:

EM=8992376 MPa,  E,’ =E"=9714655MPa, G/ =G!' =34586.06 MPa,

G, " (x)=28090.28 MPa, p" =3432.91kgm=, p, ¥ = 2811.64 kgm™
Calculated effective material properties have been used in the modal analyses of the
single and double-bundle power lines. The eigenfrequencies f [Hz] of the single power lines

have been found with a mesh 800 of BEAM188 elements of the commercial software
ANSYS, modal analyses of double-bundle power lines have been done with mesh 1455 of
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BEAM188 elements. The same problem was solved using the new 3D beam finite element
(3D NFE) for modal analysis of composite beam structures [2] (the calculation has been done
in software Mathematica). The first ten calculated eigenfrequencies of single and double
bundle power lines are shown in Tab. 1.

Tab. 1. Eigenfrequencies of the single and double-bundle power line in the xy and xz planes.

eigenfrequencies single power line eigenfrequencies double-bundle power line
f[Hz] 3DNFE | ANSYS | A[%] f[Hz] 3DNFE | ANSYS A [%]
1 Xz 02777 | 02775 | 0,0684 1 Xz 0,2777 | 0,2778 0,0036
2m Xy 0,3781 | 0,3850 | -1,8276 | 2™ Xy 0,3781 | 0,3848 -1,7694
3" Xy 0,5550 | 0,5545 0,0919 3" Xy 0,4033 0,4090 -1,4308
4" xz 05554 | 05584 | -0,5402 | 4" Xy 0,5545 | 0,5548 -0,0649
5 Xz 0,8331 | 0,8323 | 0,0948 5t Xz 05551 | 0,5555 -0,0703
6" Xy 0,8379 | 0,8377 | 0,0179 6" |torsional | 0,6346 | 0,6493 -2,3150
7™ Xy 1,1087 | 1,1097 | -0,0721 | 7" Xz 0,8327 | 0,8332 -0,0673
g" Xz 1,1094 | 1,1099 | -0,0451 | 8" Xy 0,8370 | 0,8380 -0,1243
o xz 1,3885 | 1,3873 | 0,0871 9" |torsional | 0,9563 | 0,9845 -2,9520
10" Xy 1,3894 | 1,3884 | 00713 | 10" Xy 1,1102 | 1,1103 -0,0027

The 6™ and 9" eigenmodes of single power line are shown in Fig. 3, the 6™ and 9"
eigenmodes of double bundle power line are shown in Fig. 4.
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Fig. 3. The 6™and 9" eigenmode of single power line
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Fig. 4. The 6™and 9" eigenmode of double bundle power line




5. Conclusion

In this paper, the results of modal analysis of the single and double bundle AlFe power
lines with differing attachment levels are presented. For numerical simulation our new beam
finite element and the commercial FEM software ANSYS were used. The axial, flexural and
torsional eigenfrequencies and eigenmodes have been studied. The first ten eigenmodes for
single power line are flexural and it can be observed from Fig. 3. In opposite, the first ten
eigenmodes for double bundle power lines are flexural and torsional. It can be observed from
Fig. 4. The calculations confirmed very good accurancy and effectiveness of our new beam
finite element. The largest deviation between the NFE and ANSY'S solution is occured by the
torsional eigenfrequencies. In our new finite element is the effective torsional shear modulus
and torsional mass density calculated by the RVE method but in ANSYS solution, the shear
elasticity modulus is calculated from the effective elasticity modulus for bending, what is a
simplification, which produces low accuracy of the calculation results.
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