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1. Introduction

We present derivation of the tunnelling exchange times that play the key role in the
model of trap assisted tunnelling (TAT) considering the electron and hole exchange processes
between the trapping centre lying in the forbidden band of the semiconductor and the
conduction band, valence band or a metal (Fig. 1). All exchange processes are quantitatively
described by respective exchange times. The reciprocal values of these exchange times
represent the frequency with which the exchange processes contribute to the probability of
occupation of the trap by free charge carriers. The crucial problem in any model of TAT is
the calculation of the occupation probability. In our approach this probability is expressed in
terms of only thermal and tunnelling exchange times. Our model has been published in [1, 2],
however, without presenting in detail how the exchange times had been derived.
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Fig. 1:Electron exchange tunnelling currents flowing out of the trap to the left @ or right
side and flowing into the trap from the left @ or right side ® of areverse biased
GaN/AlGaN; /GaN heterostructure.
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2. Model calculations

Let us choose point T defined by coordinates (e,,x,)which lies in the forbidden band
of the semiconductor and define an infinitesimally small ’volume” de,dx, around the chosen
point T. In this volume, the density of trapping centres with cross-section oy is given by the

distribution function D, (g,,%,) [3]. Then, the product o;D,de,dx, is a dimensionless

quantity and we canbe seen asthe trapping ability of point T.
Let us consider tunnelling of electrons from point T in the forbidden band into the conduction
band at place, see Fig. 1. The tunnelling current density of electrons (® between point T and

the conduction band at places X=X, is general expressed as a triple integral in k- space [4]

(2:')3 I-[J 2V>< re (kx) ft (gt’xt)(l_ feFD (X:ght))dkxdkydkz

However, the tunnelling current density between trapping centres in point T defined by
coordinates (&,,X,) and the conduction band CB defined by coordinates (&, X,gn.) » taking

into account the trapping ability of point T, is expressed as

. oD, (g, X .
d23¢ g =q‘4t—ﬂ(3“)detdxt I v Tk, e %)= £7° (Xegn) ik, k, (1)

where v, =7k, /ms is the carrier velocity of tunnelling electron in the direction of transport,
I,(k,) is the transmission coefficient of tunnelling electrons between point T(s,,x,) and the

conduction band (&, X5) . f(&,%) is the electron occupation probability of trapping
centres lying at deep energy levels ¢, at place x,, f/° (X5gnt) is the Fermi-Dirac distribution

function in the semiconductor at place x;,, and k,, , are the Cartesian wave numbers of

e

tunnelling electrons. Index G indicates that electrons are generated at place X, by

tunnelling from the trap placed at x, .

Equation (1) will be simplified by transforming it from the Cartesian wave number
space into energy space in a cylindrical coordination system. This is facilitated by the fact
that the energy of tunnelling electrons assumes polar symmetry in the movement direction of
electrons. For this purpose, transformation relations are used between the energy and wave

numbers of electrons: K, =+2mE /1%, k, =y2miE, /7’ cosp,
k, =+2mSE, /7% sing, p=K;+k; =\2miE, /n?

The energy of the tunnelling electron consists of two components: E, =#°k?/(2m?) is the

electron energy in the direction of tunnelling transport and E, =h2(ky +k.)?/(2m?) is the
electron energy in the direction perpendicular to the tunnelling transport.

For electrons tunnelling between point T and the conduction band it must hold that their
total energy & =E,+E, does not change, remains constant, in contrary to its two
components. If one component increases, the other component decreases by the same
amount. Utilizing the transformation formula between Cartesian and cylindrical coordinates
dk,dk,dk, = pdpdedk, we rewrite Eqgn. (1) into the following energy form:

e e
d2JeTuN _ Meo, D, (., %)
Gright —
nont Ar°h?

[HT FG(EX) ft (8t ! Xt)<1_ feFD (Xfight))dELdEX d(p] dXt dé‘t (2)

49



This expression can be further simplified. The inner integral over angle ¢ around axis x
simply gives the result 2z . Probability f,(g,,x,) is a function of the total energy rather than
of its components, therefore it can be withdrawn in front of the integrals. Finally, tunnelling
probability I,(E,) depends only on component E,. Therefore, the integral over variable
dE, will be E, =&, —E,. The maximum value of E, is equal to ¢, when the whole kinetic
energy of the electron belongs to the direction of tunnelling and E, =0. The lower value of
E, goes down to the bottom of the forbidden band. For this value of E, the tunnelling

probability can be considered as zero. Then Eqn. (2) can be rewritten into the form
e e f (e, x)D, (60, %)
G (e ) = ) 9

where we defined the tunnelling exchange time z¢ g, as

o = 1 (3 5 T () - @

223
TGright 2 h E, (%)

The term on the rightside of Eqn. (4)has a dimension of s and its reciprocal value will be

called the tunnelling exchange time z¢iq, . The right side of Eqgn.(3) represents the

contribution of one trap lying in the forbidden band at place (g,,X,) to the current density of
electrons tunnelling into the conduction band at place xg,, (see Fig. 1). The total current
density of electrons tunnelling from all traps lying in the forbidden band on energy level &,
along x axis with trap density distribution D, (¢,,x,) [2] flowing into the conduction band at

place x is obtained by integrating Eqn. (3) with respect to variable x, :

eright

>(EI‘I
d I righe (€0 Xerignt) = EACRIACRY
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Xkt Grlght (gt ' Xt ' Xnght)

dx, |de, ®)

The lower integration limit x;,is the second intersection of energy level ¢, withthe
conduction band on the opposite side, where E.(X.,)=¢, (see Fig. 1) or ife, <E,(Xy,),
then x;, =X, . Finally, the total current density (5) is differentiated with respect to spatial
coordinate, whereby one obtains the generation rate of tunnelling electrons G/ at Xiignt

occurring on the right side of the continuity equation. Hereby, the TAT model is incorporated
into the fundamental semiconductor equations.

dJeTUN & ,Xe-

For practical reasons the integral in this definition (4) will be replaced by summation,
thus dE, = AE, , and the electron energy component in the direction of tunnelling E, will

be decremented from the value ¢, in every summation step "j" by value AE, until the

rlght

tunnelling probability assumes a negligible, zero value ¢, —E, = JAE,. Then

jr (E)(e— E, JE, = (AE, 2 (j+1)r!
E, (%) j=0

and the tunnelling exchange time 7y, is expressed as
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where T'! are transmission coefficients for electron tunnelling. In WKB approximation is one
has

e
Xrighl

Tl =exp - | Jam(E (0 —& + JAE,) dx |- (8)

For tunnelling in the opposite direction (from the conduction band to the traps) it holds
(1 f (gt’x ))D (St,X ) d&‘tht, (9)

d JeTUN Xg —
Rright ( rlght) q ;-:—Il;::]t (gt’xt,xnght)
where the electron tunnelling exchange time is
1 o ve y MROL (G i
“eTUN fe (Xright) o 2h3 (AE ) Z(J_'_l)re : (10)
Rright j=0

Here, index R indicates, that electrons flow out of the conduction band, by tunnelling, at
place X, an flow into the trap at place x, . Similarly one obtains the total current density

right

flowing from place X, into the trapping centres lying on energy level &, by integrating

right
Eqn. (9) with respect to variable x, :
(1= f, (£, %))D, (£,,%,)

e TUN e _
d J Rright (gt ! Xright) - q eTUN
Xese R right (gt ’ Xt ’ Xrlght)

And by differentiating this expression one obtains the recombination rate of tunnelling
electrons RS, at place X

dx, [de, (11)

rlght

e TUN e
R e TUN 1 d ‘]Rnght (gt ’ Xright)

TAT ( erlght) = q dX (12)

right

Then, on the right side of the continuity equation with implemented TAT model there is

a difference of the recombination and generation rates. U =R —GEM™N . In a

similar way we can derive also the tunnelling exchange times zg;;' and g -

3. Conclusion

The concept of tunnelling exchange times presents a dominant contribution to our model
of TAT. The new approach allows to simply calculate the probability of occupation of the
trapping centre by a free charge carrier and subsequently to get the thermal and tunnelling
generation-recombination rates occurring in the continuity equations. This is why the TAT
model based on thermal and tunnelling exchange times is suitable for simulating the electrical
properties of semiconductor nanostructures in which quantum mechanical phenomena play
a key role. We have successfully applied the new TAT model to simulate the charge transport
in thin MIM structures [5] and in the AIGaN/GaN heterostructure [6] which are part of power
HEMT transistors.
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