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1. Introduction 
 

We present derivation of the tunnelling exchange times that play the key role in the 

model of trap assisted tunnelling (TAT) considering the electron and hole exchange processes 

between the trapping centre lying in the forbidden band of the semiconductor and the 

conduction band, valence band or a metal (Fig. 1). All exchange processes are quantitatively 

described by respective exchange times. The reciprocal values of these exchange times 

represent the frequency with which the exchange processes contribute to the probability of 

occupation of the trap by free charge carriers. The crucial problem in any model of TAT is 

the calculation of the occupation probability. In our approach this probability is expressed in 

terms of only thermal and tunnelling exchange times. Our model has been published in [1, 2], 

however, without presenting in detail how the exchange times had been derived.  
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Fig. 1:Electron exchange tunnelling currents flowing out of the trap to the left 1  or right 

side and flowing into the trap from the left 2  or right side 3  of a reverse biased 

GaN/AlxGaN1–x/GaN heterostructure. 
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2. Model calculations 
 

Let us choose point T defined by coordinates ),( tt x which lies in the forbidden band 

of the semiconductor and define an infinitesimally small ”volume” ttdd x  around the chosen 

point T. In this volume, the density of trapping centres with cross-section e

t  is given by the 

distribution function ),( ttt xD  [3]. Then, the product ttt

e

t dd xD   is a dimensionless 

quantity and we canbe seen asthe trapping ability of point T.  

Let us consider tunnelling of electrons from point T in the forbidden band into the conduction 

band at place, see Fig. 1. The tunnelling current density of electrons 4  between point T and 

the conduction band at places rightexx   is general expressed as a triple integral in k- space [4] 
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However, the tunnelling current density between trapping centres in point T defined by 

coordinates ),( tt x  and the conduction band CB defined by coordinates ),( rightet x , taking 

into account the trapping ability of point T, is expressed as  
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where e

T/ mkv xx   is the carrier velocity of tunnelling electron in the direction of transport, 

)(e xk  is the transmission coefficient of tunnelling electrons between point ),(T tt x  and the 

conduction band ),( e

rightt x , ),( ttt xf   is the electron occupation probability of trapping 

centres lying at deep energy levels t  at place tx , )( e

right

FD

e xf  is the Fermi-Dirac distribution 

function in the semiconductor at place 
e

rightx , and zyxk ,,  are the Cartesian wave numbers of 

tunnelling electrons. Index G indicates that electrons are generated at place 
e

rightx  by 

tunnelling from the trap placed at tx . 

Equation (1) will be simplified by transforming it from the Cartesian wave number 

space into energy space in a cylindrical coordination system. This is facilitated by the fact 

that the energy of tunnelling electrons assumes polar symmetry in the movement direction of 

electrons. For this purpose, transformation relations are used between the energy and wave 

numbers of electrons:  
2e

T /2 xx Emk  ,  cos/2 2e

R  Emk y , 

    sin/2 2e

R  Emkz , 
2e

R

22 /2  Emkk zy  

The energy of the tunnelling electron consists of two components: )2/( e

T

22 mkE xx   is the 

electron energy in the direction of tunnelling transport and )2/()( e

R

22 mkkE zy    is the 

electron energy in the direction perpendicular to the tunnelling transport.  

For electrons tunnelling between point T and the conduction band it must hold that their 

total energy  EExt  does not change, remains constant, in contrary to its two 

components. If one component increases, the other component decreases by the same 

amount. Utilizing the transformation formula between Cartesian and cylindrical coordinates 

xzyx kkkk dddddd   we rewrite Eqn. (1) into the following energy form: 
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This expression can be further simplified. The inner integral over angle   around axis x 

simply gives the result 2 . Probability ),( ttt xf   is a function of the total energy rather than 

of its components, therefore it can be withdrawn in front of the integrals. Finally, tunnelling 

probability )(e xE  depends only on component xE . Therefore, the integral over variable 

Ed  will be xEE  t . The maximum value of xE  is equal to t , when the whole kinetic 

energy of the electron belongs to the direction of tunnelling and 0E . The lower value of 

xE  goes down to the bottom of the forbidden band. For this value of xE  the tunnelling 

probability can be considered as zero. Then Eqn. (2) can be rewritten into the form 
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where we defined the tunnelling  exchange time 
TUN e

 rightG  as 
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The term on the rightside of Eqn. (4)has a dimension of s
-1

 and its reciprocal value will be 

called the tunnelling exchange time 
TUN e

 rightG . The right side of Eqn. (3) represents the 

contribution of one trap lying in the forbidden band at place ),( tt x to the current density of 

electrons tunnelling into the conduction band at place 
e

rightx  (see Fig. 1). The total current 

density of electrons tunnelling from all traps lying in the forbidden band on energy level t  

along x axis with trap density distribution ),( ttt xD  [2] flowing into the conduction band at 

place rightex  is obtained by integrating Eqn. (3) with respect to variable tx : 
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The lower integration limit e

leftx is the second intersection of energy level t withthe 

conduction band on the opposite side, where t

e

leftc )( xE  (see Fig. 1) or if )( Mt xEc , 

then M

e

left xx  . Finally, the total current density (5) is differentiated with respect to spatial 

coordinate, whereby one obtains the generation rate of tunnelling electrons TUNe 

TATG at 
e

rightx

occurring on the right side of the continuity equation. Hereby, the TAT model is incorporated 

into the fundamental semiconductor equations. 
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For practical reasons the integral in this definition (4) will be replaced by summation, 

thus xx EdE  , and the electron energy component in the direction of tunnelling xE  will 

be decremented from the value t  in every summation step "j" by value xE  until the 

tunnelling probability assumes a negligible, zero value xxt EjE  . Then  
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and the tunnelling exchange time 

TUN e

 rightG  is expressed as  
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where 
j

eΓ  are transmission coefficients for electron tunnelling. In WKB approximation is one 

has 
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For tunnelling in the opposite direction (from the conduction band to the traps) it holds  
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where the electron tunnelling exchange time is  
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Here, index R indicates, that electrons flow out of the conduction band, by tunnelling, at 

place 
e

rightx  an flow into the trap at place tx . Similarly one obtains the total current density 

flowing from place 
e

rightx into the trapping centres lying on energy level t by integrating 

Eqn. (9) with respect to variable tx : 
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And by differentiating this expression one obtains the recombination rate of tunnelling 

electrons TUNe 

TATR at place 
e

rightx : 

 
e

right

e

rightt

TUN e

 rightR

righte

TUNe 

TAT
d

),(Jd1
)(

x

x

q
xR


       (12) 

Then, on the right side of the continuity equation with implemented TAT model there is 

a difference of the recombination and generation rates. TUNe 

TAT

TUNe 

TAT

TUNe 

TAT GRU  . In a 

similar way we can derive also the tunnelling exchange times 
TUN e

 leftG  and 
TUN e

 leftR . 

 

3. Conclusion  
 

The concept of tunnelling exchange times presents a dominant contribution to our model 

of TAT. The new approach allows to simply calculate the probability of occupation of the 

trapping centre by a free charge carrier and subsequently to get the thermal and tunnelling 

generation-recombination rates occurring in the continuity equations. This is why the TAT 

model based on thermal and tunnelling exchange times is suitable for simulating the electrical 

properties of semiconductor nanostructures in which quantum mechanical phenomena play 

a key role. We have successfully applied the new TAT model to simulate the charge transport 

in thin MIM structures [5] and in the AlGaN/GaN heterostructure [6] which are part of power 

HEMT transistors. 

 

Acknowledgments 
 

The work has been supported by the Scientific Grant Agency of the Ministry of 

Education, Science, Research and Sport of the Slovak Republic and of the Slovak Academy 

of Sciences (projects VEGA 1/0712/12 and 1/0377/13). 



 

52 

 

References 
 

[1] J. Racko, M. Mikolášek, A. Grmanová, J. Breza, P. Benko, O. Gallo, L. Harmatha: 

Radioengineering21 (2012) 213. 

[2] J. Racko, J. Pecháček, M. Mikolášek, P. Benko, A. Grmanová, L. Harmatha, J. Breza: 

Radioengineering22 (2013) 240. 

[3] J. Racko, M. Mikolášek, R. Granzner, J. Breza, D. Donoval, A. Grmanová, 

L. Harmatha, F. Schwierz, K. Fröhlich: Central European Journal of Physics 9, 230 

(2011). 

[4] D. Schroeder: Modelling of Interface Carrier Transport for Device Simulation, Springer 

Verlag, Wien (1994). 

[5] J. Racko, M. Mikolášek, L. Harmatha, J. Breza, B. Hudec, K. Fröhlich, J. Aarik, 

A. Tarre, R. Granzner, F. Schwierz: Journal of Vacuum Science and Technology B 29 

(2011) 01AC08-1.

 


