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1. Introduction and Problem description 

The paper deals with two-way coupled thermoelectric analysis of link conductor made 

of Functionally Graded Material (FGM) using new-derived FEM equations. Accuracy and 

effectiveness of the new approach compared to classic approach in computer modelling of 

such systems will be introduced. 

Besides Joule heat, thermoelectric effects describe direct conversion of thermal 

energy into electric energy (Seebeck effect) and conversion of electric energy into the 

temperature difference within the system (Peltier effect). All these effects are mathematically 

described by constitutive equations [1]: 

𝐪 =  Π ∙ 𝐉 −  𝜆 ∙ ∇𝑇 

𝐉 =  σ ∙  𝐄 −  𝛼 ∙ ∇𝑇  
(1) 

where 𝐪 [Wm
-2

] is heat flux vector, 𝐉 [Am
-2

] is electric current density vector,  Π  [V] is 

Peltier coefficient matrix,  𝜆  [Wm
-1

K
-1

] is thermal conductivity matrix, 𝑇 [K] is absolute 

temperature, 𝐄 [Vm
-1

] is electric field intensity vector,  𝜎  [Sm
-1

] is electric conductivity 

matrix and  𝛼  [VK
-1

] is Seebeck coefficient matrix. These constitutive equations are 

coupled by set of governing equations for static thermal and electric fields: 

∇ ∙ 𝐪 = 𝑃 

∇ ∙ 𝐉 = 0 
(2) 

where 𝑃 [Wm
-3

] is heat generation per volume unit. 

Let us consider FGM conductor with length 𝐿 [m], and rectangular cross-section            

area 𝐴 [m
2
] (height h [m] and width b [m]) with nodes symbolically denoted “0” and “L”, see 

Fig. 1. 

 

Fig.1:  Two-nodal conductor for thermoelectric analysis. 

 

In FG materials the material properties are different for every point of the system. 

This material behaviour can be reduced to the 1D change of material properties (x-direction) 

using homogenization process, further described in [2]. When we express the differential 
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equations (1) and (2) for 1D system we get the system of differential equations with non-

constant coefficients and with right-hand side. This type of equations can be effectively 

calculated using original method further explained in [3]. The method includes calculation of 

so-called transfer functions 𝑐 𝑥  and 𝑏 𝑥 . Using this method for solving the system of 

coupled thermoelectric 1D differential equations we can derive the system of FEM equations 

for FGM link element that supports thermoelectric effects: 
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 (4) 

In [2] there are presented also equations for calculation the primary variables for chosen 

points within the link element. 

 

2. Numerical experiment 

Let us consider electric conductor with rectangular cross-section according to Fig. 1. 

Its length is 𝐿 = 500  mm , height 𝑕 = 10  mm  and width 𝑏 = 20  mm . Let the conductor 

consists of mixture of two component materials – matrix (index 𝑚) with constant electric 

conductivity 𝜎𝑚 𝑥, 𝑦 = 1.429 × 106  [Sm−1] and thermal conductivity 𝜆𝑚  𝑥, 𝑦 =
2 [Wm−1K−1], and fibre (index 𝑓) with electric conductivity 𝜎𝑓 𝑥, 𝑦 = 1.111 × 107  [Sm−1] 

and thermal conductivity 𝜆𝑚 𝑥, 𝑦 = 400 [Wm−1K−1]. Volume fraction of individual 

components is functionally changed according to chosen polynomial: 

  𝑣𝑓 𝑥, 𝑦 = 0.7125 − 7.2214𝑥2 + 9.6286𝑥3 + 92.500𝑦 − 1658.57𝑥2𝑦 + 2211.43𝑥3𝑦 −

2500𝑦2 + 1.5514 × 105𝑥2𝑦2 − 2.0686 × 105𝑥3𝑦2 − 9 × 105𝑦3 + 1.08 × 107𝑥2𝑦3 −
1.44 × 107𝑥3𝑦3  [-] 

  𝑣𝑚  𝑥, 𝑦 = 1 − 𝑣𝑓 𝑥, 𝑦   [-] 

 

Let us consider final Seebeck coefficient for whole conductor according to chosen 

polynomial function: 

  𝛼 𝑥 = −4 × 10−4 + 28 × 10−4𝑥2 [VK−1]  

We assume static state for thermoelectric analysis. In nodes 0 and L there are electric 

potentials and temperatures specified and there is variable auxiliary heat generation in the 

conductor, so boundary conditions are: 

  𝜑 0 = 0.11  V ;   𝑇 0 = 273 [K] 

  𝜑 𝐿 = 0  V ;   𝑇 𝐿 = 283 [K] 

  𝑃𝑎𝑢𝑥  𝑥 = 2 × 105 − 6.4 × 106𝑥5  Wm−3  

 

We also created 2D model in code ANSYS [4], we used 55 000 PLANE223 elements (8 node 

quad-elements). The task was also solved in software Mathematica [5], where the differential 

equations (3) and (4) with specified boundary conditions and homogenized material 

properties were numerically solved using iterative algorithm. Finally, the task was also solved 

by only one our new developed two-nodal link element using FEM equations (3) and (4) for 



338 

 

nodal points of the link and for chosen points within the link. In Fig. 2 and Fig. 3 we can see 

calculated longitudinal distribution of the electric potential and temperature in the conductor, 

respectively. Summary of calculated results is in Tab. 1. 

 

 

Fig.2:  Distribution of the electric potential through the length of conductor. 

 

 

Fig.2:  Distribution of the temperature through the length of conductor. 

 

Tab. 1. Comparison of calculated electric and thermal quantities for chosen layers             

and homogenized values in nodal points of the conductor. 

𝐽layer ,node  

× 105  [Am−2] 
𝐽1,0 𝐽1,𝐿 𝐽6,0 𝐽6,𝐿  𝐽11,0 𝐽11,𝐿 𝐽0

𝐻  𝐽𝐿
𝐻  

new element 6.0532 21.3455 11.0189 8.0888 14.6612 8.3291 10.8288 10.8288 

ANSYS 6.1584 21.5903 11.2089 8.1852 14.9130 8.4328 - - 

Mathematica - - - - - - 10.8274 10.8274 

𝑞layer ,node  

× 104  [Wm−2] 
𝑞1,0 𝑞1,𝐿 𝑞6,0 𝑞6,𝐿  𝑞11,0 𝑞11,𝐿 𝑞0

𝐻  𝑞𝐿
𝐻  

new element -7.7619 7.9057 -14.5377 4.6420 -19.5074 4.7011 -14.2730 5.2933 

ANSYS -7.9756 9.2951 -14.9012 4.9339 -19.9653 4.9732 - - 

Mathematica - - - - - - -14.1887 5.2594 
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There is small difference in the results (secondary variables) between ANSYS 

solution and calculation using the new approach in nodal points because of substitutional 

functions used for conversion non-polynomials into polynomials during iterative process. But 

we can see from Fig. 2 and Fig. 3 that obtained results correspond to ANSYS 2D simulation 

very well. Differences in the results for primary variables in the conductor inner region are 

due to fact that our approach is based on reduction of the real 3D system into 1D problem. 

 

3. Conclusion 

New FEM equations with consideration Joule heat, auxiliary heat, and thermoelectric 

effects, like Seebeck and Peltier effects, were successfully used for demonstration the 

effectiveness and accuracy of our new approach in calculation of the thermoelectric effects in 

link conductor. Numerical example with good agreement between calculations with just only 

one new link element and commercial FEM code that uses numbers of classic elements have 

been presented. The new approach fully agrees with numerical solution for 1D differential 

equation of thermal and electric fields calculated using iterative algorithm. 
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