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1. Introduction and Problem description

The paper deals with two-way coupled thermoelectric analysis of link conductor made
of Functionally Graded Material (FGM) using new-derived FEM equations. Accuracy and
effectiveness of the new approach compared to classic approach in computer modelling of
such systems will be introduced.

Besides Joule heat, thermoelectric effects describe direct conversion of thermal
energy into electric energy (Seebeck effect) and conversion of electric energy into the
temperature difference within the system (Peltier effect). All these effects are mathematically
described by constitutive equations [1]:

q=[I]-J—[A]-VT (1)
J=T[o] - (E—[a] -VT)
where q [Wm™] is heat flux vector, J [Am™] is electric current density vector, [IT] [V] is
Peltier coefficient matrix, [A] [Wm™K™] is thermal conductivity matrix, T [K] is absolute
temperature, E [Vm™] is electric field intensity vector, [o] [Sm™] is electric conductivity
matrix and [a] [VK™] is Seebeck coefficient matrix. These constitutive equations are
coupled by set of governing equations for static thermal and electric fields:
V-q=P )
V-]=0
where P [Wm™] is heat generation per volume unit.

Let us consider FGM conductor with length L [m], and rectangular cross-section

area A [m?] (height h [m] and width b [m]) with nodes symbolically denoted “0” and “L”, see

Fig. 1.
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Fig.1: Two-nodal conductor for thermoelectric analysis.
In FG materials the material properties are different for every point of the system.

This material behaviour can be reduced to the 1D change of material properties (x-direction)
using homogenization process, further described in [2]. When we express the differential
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equations (1) and (2) for 1D system we get the system of differential equations with non-
constant coefficients and with right-hand side. This type of equations can be effectively
calculated using original method further explained in [3]. The method includes calculation of
so-called transfer functions c(x) and b(x). Using this method for solving the system of
coupled thermoelectric 1D differential equations we can derive the system of FEM equations
for FGM link element that supports thermoelectric effects:
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In [2] there are presented also equations for calculation the primary variables for chosen
points within the link element.

2. Numerical experiment
Let us consider electric conductor with rectangular cross-section according to Fig. 1.

Its length is L = 500 [mm], height h = 10 [mm] and width b = 20 [mm]. Let the conductor
consists of mixture of two component materials — matrix (index m) with constant electric
conductivity o, (x,y) = 1.429 x 10° [Sm~!] and thermal conductivity 2,,(x,y) =
2 [Wm™K™'], and fibre (index f) with electric conductivity o¢ (x,y) = 1.111 x 107 [Sm™!]
and thermal conductivity A,,(x,y) =400 [Wm~'K~!]. Volume fraction of individual
components is functionally changed according to chosen polynomial:

vr(x,y) = 0.7125 — 7.2214x* 4+ 9.6286x> + 92.500y — 1658.57x%y + 2211.43x3y —

2500y% + 1.5514 x 10°x%y? — 2.0686 X 10°x3y% — 9 x 10°y3 + 1.08 x 107x%y3 —

1.44 x 107x3y3 [-]

U (6,y) = 1= v (x,y) [

Let us consider final Seebeck coefficient for whole conductor according to chosen
polynomial function:

a(x) = —4x107* + 28 x 10~*x? [VK™1]
We assume static state for thermoelectric analysis. In nodes 0 and L there are electric
potentials and temperatures specified and there is variable auxiliary heat generation in the
conductor, so boundary conditions are:

©(0) = 0.11[V]; T(0) =273 [K]

(L) =0[V]; T(L) =283 [K]

Py () =2 x10° — 6.4 x 10°x° [Wm™3]
We also created 2D model in code ANSY'S [4], we used 55 000 PLANE223 elements (8 node
quad-elements). The task was also solved in software Mathematica [5], where the differential
equations (3) and (4) with specified boundary conditions and homogenized material
properties were numerically solved using iterative algorithm. Finally, the task was also solved
by only one our new developed two-nodal link element using FEM equations (3) and (4) for
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nodal points of the link and for chosen points within the link. In Fig. 2 and Fig. 3 we can see
calculated longitudinal distribution of the electric potential and temperature in the conductor,
respectively. Summary of calculated results is in Tab. 1.
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Fig.2: Distribution of the electric potential through the length of conductor.
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Fig.2: Distribution of the temperature through the length of conductor.

Tab. 1. Comparison of calculated electric and thermal quantities for chosen layers
and homogenized values in nodal points of the conductor.

llayer ,node

~ J10 JiL Je,0 Jo.L J11,0 S Ji Ji
x 10° [Am~—?]

new element 6.0532 | 21.3455 | 11.0189 | 8.0888 | 14.6612 | 8.3291 | 10.8288 | 10.8288

ANSYS 6.1584 | 21.5903 | 11.2089 | 8.1852 | 14.9130 | 8.4328 - -
Mathematica - - - - - - | 10.8274 | 10.8274
qlayer ,node H H

q1,0 qi,L q6,0 qe,L q11,0 q11,L 90 qL
x 104 [Wm‘z]

new element | -7.7619 | 7.9057 | -14.5377 | 4.6420 | -19.5074 | 4.7011 | -14.2730 | 5.2933
ANSYS -7.9756 | 9.2951 | -14.9012 | 4.9339 | -19.9653 | 4.9732 - -
Mathematica - - - - - -1 -14.1887 | 5.2594
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There is small difference in the results (secondary variables) between ANSYS
solution and calculation using the new approach in nodal points because of substitutional
functions used for conversion non-polynomials into polynomials during iterative process. But
we can see from Fig. 2 and Fig. 3 that obtained results correspond to ANSYS 2D simulation
very well. Differences in the results for primary variables in the conductor inner region are
due to fact that our approach is based on reduction of the real 3D system into 1D problem.

3. Conclusion

New FEM equations with consideration Joule heat, auxiliary heat, and thermoelectric
effects, like Seebeck and Peltier effects, were successfully used for demonstration the
effectiveness and accuracy of our new approach in calculation of the thermoelectric effects in
link conductor. Numerical example with good agreement between calculations with just only
one new link element and commercial FEM code that uses numbers of classic elements have
been presented. The new approach fully agrees with numerical solution for 1D differential
equation of thermal and electric fields calculated using iterative algorithm.
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