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Abstract 
Texture is preferred orientation of crystallites in some polycrystalline materials. Different 
methods are applied to characterize the orientation patterns and determine the orientation 
distribution. Most of these methods rely on diffraction.  
This paper introduces the principle of a method used for characterisation of ceramics texture 
based on anisotropy of electrical properties of crystallites in ceramics. The mathematical 
framework of this method is presented in theoretical part of our work. In experimental section 
we demonstrate how the theoretical result could be used to evaluate technology texture of 
ceramic material intended for the production of electronic insulators. 
 
1. Introduction 

The distribution of crystallographic orientations of a polycrystalline dielectric 
(texture) has a considerable impact on application properties of the material. The radial 
texture arising in the manufacture process of cylindrical insulators (technological texture) has 
a detrimental effect on insulators functionality. It is therefore advisable to check the 
technological texture of dielectric directly in the production process of insulators.  

In general, texture can be investigated by various quantitative techniques (X-ray 
diffraction, ESBD, SEM, …) and qualitative analysis (polarized microscope, Laue 
photography, pole figure technique, …). All of the laboratory methods mentioned above are 
not applicable when we check the technological texture of serial products because they 
require quite complicated technical equipment and procedures. In our work we introduce the 
principle of a simple method for the evaluation of radial technological texture in dielectric. 
The main idea is based on the investigation of electrostatic field radial axial distribution in 
thin cylindrical samples made from dielectric material.  

In the theoretical part we calculate electrostatic field distribution in thin homogeneous 
cylindrical dielectric sample inserted between electrodes of the capacitor that has circular 
electrode with unequal diameter. We are especially interested in axially symmetric field 
dissipation in the area behind the edge of the circular electrode with smaller radius. Generally 
the typical case of Sturm-Liouville boundary value problem called Bessel`s differential 
equation arises in calculation of the scalar potential with axial symmetry. We found the 
particular solution of this equation which defines the Bessel functions and expressed the 
potential of electrostatic fields in material. Consequently we considered a limit case of 
extremely slim capacitor and investigated decrease of the field potential in the area behind the 
edge of smaller electrode by means of asymptotic forms of Bessel functions.  

In the experimental part we propose how to use the result of theoretical analysis for 
the checking of technological texture in practice. Experimental measured radial distribution 
of electrostatic potential may be different from the theoretical values in some measurement 
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points. The mentioned differences are due to local variations of dielectric properties of 
material in these points and they allow evaluating the radial technology texture.  

 
2. Theory 

We consider a cylindrical dielectric sample with radius R1 and very small thickness h 
( h << R2) inserted between two parallel coaxial metal electrodes with radius R1 and R2 
( ). Voltage U is applied to electrodes (scheme is shown in fig.1). 2R < R1

 
                                                             

 
 
 
 
 

 

 
 
 
 
 
 
 

 

U h

x 

R2

R1

y 

z 

0 

r 

 
Fig.1   

 
Potential of electrode with radius R1 is ϕ1 and potential of electrode with radius R2 is 

ϕ2. We are interested in electrostatic field potential ϕ dependence on distance r from the axis 
of both plates measured on the sample surface in area 2 1R r R≤ ≤  (for  according 
fig.1). 

z h=

 
2.1 The solution of Laplace equation for axially symmetric electrostatic field  
It is possible to consider Laplace equation [1,2] for charges-free electrostatic field in 
investigation of scalar potential distribution in thin cylindrical dielectric media. The 
mentioned equation can be written in cylindrical coordinates: 
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If we assume axial symmetry of homogeneous dielectric media, the applies.                        
We expect a separable solution: 

2 2 0/∂ ϕ ∂θ =

( ) ( ) (r; z r Y zϕ Φ= .                                                                                                         (3) 

It results from Laplace equation that components ( )rΦ  and ( )Y z must obey next equations: 
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whereλ is constant. Constant λ  can be positive, negative or it can be equal to zero.  
a) If 0λ = we can easily find the solution of Eq.(1) in the following form:  

( )0 r; z Kz ln r L ln r Mz Nϕ = + + + ,                                                                                   (6) 
where K, L, M and N are constants of integration depending on boundary conditions.  
b)  In case if λ > 0  the solution of Eq.(5) can be found in the form: 

( ) ( )1pY z Y sin kz α= + ,   where , Y2kλ = 1 = const ,                                                          (7) 
Eq. (4) can be transformed to a special case of modified Bessel`s differential equation: 
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Next, the solution of Eq.(4) can be determined as follows:  
( ) ( ) ( )2 0 2 0p r A I kr B K krΦ = + ,                                                                                           (9) 

where A2 and BB2 are constants of integration and I0(kr) and K0(kr) are modified Bessel`s 
functions of zero order [3, 4]: 
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 c)  In case of 0λ <  the solution of Eq.(5) is: 
( ) 3 3

kz kzY x A e B e−= +  , where .                                                                             (10) 2kλ = −
and A3 and BB3 are constants of integration. Eq.(4) can be transformed to the next form: 
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Equation (11) is also a special case of Bessel`s differential equation [4, 5] and the solution of 
Eq.(4) can be written in the form: 
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are Bessel`s functions of zero order. Subsequently, the general solution of Eq.(1) can be 
found as:  

( ) ( ) ( ) ( ) ( )1 0
2 0 2 0r; z Y A I kr B K kr sin kz Kz ln r L ln r Mz Nϕ α⎡ ⎤= + + + + +⎣ ⎦ +  ,  if  0>λ  (12)  

( ) ( ) ( ) ( ) ( )2
2 0 2 0 3 3

kz kzr; z K J kr M Y kr A e B e Kz ln r L ln r Mz Nϕ −⎡ ⎤= + + + + +⎣ ⎦ + ,  if  0λ <  (13)     
 
2.1 Application of boundary conditions 
Let distribution of scalar potential be determined by function ( )( )zrI ;.ϕ  in area , 

 (area I). 
20 r R≤ ≤

0z ≤ ≤ h ( ) ( ). ;I r zϕ  must obey the following conditions: 
( ) ( ) 10I . r;ϕ ϕ= , ( ) ( ) 2

I . r;hϕ ϕ=  .                                                                                         (14) 

For this reason, the function  must be written in the form (12) and the following 
conditions must be satisfied: 

( )( zrI ;.ϕ )
( ) 0sin kh α+ = , ( )0sin k α 0+ = . This means kh nα π+ = , 

mα π=  (where n and m = 0, , ,...). There is no reason for the periodicity of solution 1± 2±
( ) (. ;I r zϕ ) . Therefore, it is possible to take into account 0α = , k / hπ= . Boundary 

conditions (14) can be satisfied only in case if 0K =  and 0L = . For that reason ( )( )zrI ;.ϕ  
must be written in the following form: 
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Integration constants can be determined by substituting (15) to (14): 

1N ϕ=  ,  2 1 UM
h h

ϕ ϕ−
= = .                                                                                                 (16) 

and the distribution of scalar potential in this area takes the form: 
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Let the distribution of scalar potential be determined by function ( ) (II . r; zϕ )
h

 in area 

,  (area II). Function 2 1R r R≤ ≤ 0z ≤ ≤ ( ) ( )II . r; zϕ  must obey the following conditions: 
( ) ( ) 10II . r ,ϕ ϕ=  , ( ) ( ) ( ) (2
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Therefore, function ( )( zrII ;.ϕ )  must be also written in the form (12). The boundary conditions 
(18) can be satisfied only in case if 0L = and 1N ϕ= are considered in Eq.(12).           
If we consider the following substitution:  

0M K ln r= − ,                                                                                                                    (19) 
where r0 is constant, the distribution of scalar potential can be written as follows: 
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We assume that , then hr >> /r hπ >>  and arguments of Bessel`s functions are very large. 
It holds follows for very large values of arguments in this case [4, 5]: 
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In addition, the function ( ) (. ;II r zϕ )  must be decreasing and 2 0A =  for that reason. 
Consequently, the distribution of scalar potential in thin dielectric media inserted between 
electrodes is determined by the following functions: 
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After substituting Eq.(21) and Eq.(22) to second equation (18) we obtain: 
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We can find constant r0 by means of the fact that total electric charge Q accumulated on both 
electrodes is the same. In the case of thin homogeneous sample we assume: 
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where ε is electric permittivity of the material (ε = const in homogeneous case) and ( ).Iσ , 
are charge densities on electrodes surface (in area I and area II). The following applies: ( ).IIσ

( ) ( ) ( ). . ;0I I
zE rσ ε=   for ,         2r R≤ ( ) ( ) ( ). . ;0II II

zE rσ ε=    for 2 1R r R≤ ≤                  (25) 

where ( ).I
zE , ( ).II

zE  are z-components of electrostatic intensity vector in areas I and II 
respectively. We consider: 
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If we consider Eq.(24) we obtain: 
2

1 0

ln 0
R

R

rr d r
r

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∫ .                                                                                                              (27) 

 160



After integrating of Eq.(27) we can determine r0 as:  
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and K by substituting of Eq.(28) to Eq.(23) consequently: 
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We can find the distribution of scalar potential in the area II. on the surface of dielectric 
media (z = h) by substituting Eq.(29) and Eq.(28) to Eq.(22). Next, the voltage measured on 
the surface of thin sample can be evaluated by:  
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3. Experiment   
Experimental measurements were carried out on the raw corundum ceramic material. 
Cylindrical sample with a diameter of 320 mm was prepared. The thickness of sample was 
2 mm and applied voltage U = 1.5 V. The voltage Uv was measured in eight directions (I., 
II.,...VIII) which were rotated by 45o. Measurements were carried out on the surface of the 
sample by means of equipment illustrated in Fig.1. Radiuses of electrodes were R1 =8,5 mm 
and R2 = 160 mm. Experimental data were compared with the theoretical result (30). The 
obtained result is shown in Fig.2.  
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1,4
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 0 2         Fig.2 Discrete symbols - data measured in different directions along diameter of the  
                  cylindrical sample. Solid line - theoretical result  
 
4. Conclusion 
The quality and efficiency of the technology of electronic insulators for very high voltage 
(VHV) depend on the characteristics of the used ceramic material. Many authors have dealt 
with the evaluation of the texture and dielectric properties of materials in the past [6-12]. In 
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our work we scanned local changes of dielectric properties of a thin ceramic sample by 
means of the measurement of distribution of scalar electric potential on the sample surface. 
The observed discrepancies between theoretical and measured values are caused by the local 
inhomogeneities in material structure. It should be noted that our theoretical result (30) was 
obtained for the homogeneous sample under the simplifying assumptions. However, the 

 of the blank from the 
irections in which the values of the electric potential were measured. 

 staff of CERAM Čab for the support of research and providing samples 

his work was financially supported by grant of Slovak Republic VEGA No.1/0356/13 

. 345-353. 

02, p. 144-166. 

nickej keramiky. Kandidátska 

mická mechanická analýza keramického materiálu. 

Academy of 

stanovenie technologickej textúry výliskov. 

dustry.  

 Dresden - Rossendorf, 2009. 

. Dresden : Forschungszentrum Dresden - Rossendorf, 2009. 96 s ISBN 978-
-941405-05-9.

 

tendency of dependence (30) is significant in practical use.  
In view of the observed homogeneity of the blank (untreated material) structure, the 
measurement results show a high degree of orientation of particles of the ceramic mass 
plastic components across the blank. We assume that the observed deviations in electrical 
potential values are an expression of rearranging of the texture-making particles. The created 
texture and homogeneous environment in the volume of the blank should lead to the low 
reject of the produced insulators due to the presence of cracks or reducing their mechanical 
strength. This assumption was confirmed in technology of insulators production. The 
manufactured series of insulators were characterized by low levels of the reject. The same 
conclusion was also obtained by method of an analysis of dimensional changes of the 
samples before and after firing, which were collected from the profile
d
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